## Cluster Synthesis. 6. The Unusual Structures, Bonding, and Reactivity of Some Sulfido-Bridged Tungsten-Osmium Carbonyl Cluster Compounds

## Richard D. Adams,\* István T. Horváth, and Pradeep Mathur

Contribution from the Department of Chemistry, Yale University, New Haven, Connecticut 06511. Received February 14, 1984

Abstract: In the presence of UV irradiation Os<sub>3</sub>(CO)<sub>9</sub>(µ<sub>3</sub>-S)<sub>2</sub> (1) reacts with W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph) to give a mixture of four principal products:  $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)_2$  (2), 28%;  $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu_3-S)_2$  (3), 7%;  $Os_3W(CO)_{11}$  $(PMe_2Ph)_2(\mu_3-S)_2$  (4), 10%; Os<sub>3</sub>W<sub>2</sub>(CO)<sub>14</sub>(PMe<sub>2</sub>Ph)<sub>2</sub>( $\mu_3$ -S)( $\mu_4$ -S) (5), 13%. Each of the products have been characterized by IR and <sup>1</sup>H NMR spectroscopies and an X-ray crystallographic analysis. Compounds 3-5 are products of secondary reactions and have been prepared independently from reactions with 2. 2 plus PMe<sub>2</sub>Ph yields 3 in 69% yield. Photolysis of 3 leads to 2, 18% yield, and 4, 37% yield. Photolysis of 2 and W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph) leads to 5, 51% yield. The structure of 2 consists of a cluster of four metal atoms arranged in the form of a butterfly tetrahedron with the tungsten atom in a wing-tip position. Triply bridging sulfido ligands bridge the open triangular faces. The cluster contains 64 electrons and conforms to the bonding requirements of the polyhedral skeletal electron pair theory but violates the conditions of the 18-electron rule. 4 is isoelectronic with 2. The cluster of 4 could be described as a butterfly tetrahedron with one bond missing. It has only four metal-metal bonds and conforms to the bonding requirements of the 18-electron rule but violates that of the polyhedral skeletal electron pair theory. 3 contains a planar cluster of one tungsten and three osmium atoms. It has only three metal-metal bonds and two triply bridging sulfido ligands symmetrically disposed about the  $M_4$  plane. The tungsten atom contains both phosphine ligands. 5 has a structure analogous to 4 but has in addition a tungsten tricarbonyl phosphine unit bridging one of the tungsten-sulfur bonds. 5 is electronically unsaturated and contains two unusually short metal-metal bonds which are adjacent to each other. This suggests that the unsaturation is distributed over a trimetallic center.

The structures and bonding of the vast majority of organometallic compounds can be explained through the use of 18electron rule and the notion of localized two-center-two-electron bonds.<sup>1-3</sup> However, recent studies of higher nuclearity transition-metal cluster compounds have revealed a series of compounds that cannot be understood in these simple terms. This has led to the development of delocalized bonding explanations, the most successful of which is the polyhedral skeletal electron pair (PSEP) theory.3-5

In our recent studies we have utilized the coordination properties of the bridging sulfido ligand to synthesize a variety of new higher nuclearity sulfido osmium carbonyl cluster compounds.<sup>6-11</sup> Some of these exhibit unusual bonding properties and reactivity.<sup>11</sup> We have recently found that the bridging sulfido ligand can be of great value also in the synthesis of mixed-metal carbonyl cluster compounds.12

In this report we shall describe the results of our investigations of the synthesis, structures, bonding, and reactivity of a series of tungsten-osmium carbonyl cluster compounds that further demonstrate the value of the bridging sulfido ligand in cluster synthesis and epitomize the differences that exist between the localized and delocalized bonding schemes. A preliminary report of some of this work has been published.<sup>13</sup>

(1) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry"; Wiley:

New York, 1980; Chapters 3 and 25.
(2) Collman, J. P.; Hegedus, L. S. "Principles and Applications of Organotransition Metal Chemistry"; University Science Books: Mill Valley, CA, 1980; Chapter 2.

(3) Johnson, B. F. G.; Benfield, R. E. In "Topics in Inorganic and Organometallic Stereochemistry"; Geoffroy, G., Ed., Wiley: New York, 1981.
(4) Wade, K. In "Transition Metal Clusters"; Johnson, B. F. G., Ed.;

Wiley: Chichester, 1980.
(5) Mingos, D. M. P. Adv. Organomet. Chem. 1977, 15, 1.
(6) Adams, R. D.; Dawoodi, Z.; Foust, D. F.; Segmüller, B. E. J. Am. Chem. Soc. 1983, 105, 831.

(7) Adams, R. D.; Horvath, I. T.; Yang, L. W. J. Am. Chem. Soc. 1983, 105, 1533.

(8) Adams, R. D.; Foust, D. F.; Mathur, P. Organometallics 1983, 2, 990. (9) Adams, R. D.; Horvåth, I. T.; Mathur, P.; Segmüller, B. E.; Yang, L. W. Organometallics 1983, 2, 1078.

(10) Adams, R. D.; Horvath, I. T.; Mathur, P. Organometallics 1984, 3,

(11) Adams, R. D.; Yang, L. W. J. Am. Chem. Soc. 1983, 105, 235. (12) Adams, R. D.; Hor, T. S. A.; Mathur, P. Oganometallics 1984, 3, 634.

### Experimental Section

Although the products are air stable, all the reactions were performed under a prepurified nitrogen atmosphere. Photolyses were carried out by using an external high-pressure mercury lamp on reaction solutions contained in Pyrex glassware. Solvents were stored over 4-Å molecular sieves and were deoxygenated with a dispersed stream of nitrogen gas before use. IR spectra were recorded on a Nicolet 5-SX FT-IR spectrophotometer. A Bruker WM 500 FT-NMR spectrometer was used to obtain <sup>1</sup>H NMR spectra at 500 MHz. UV-visible spectra were recorded on a Cary Model 219 spectrophotometer in CH<sub>2</sub>Cl<sub>2</sub> solvent. Os<sub>3</sub>-(CO)<sub>9</sub>( $\mu_3$ -S)<sub>2</sub> was prepared from HOs<sub>3</sub>(CO)<sub>10</sub>( $\mu$ -SPh) by a previously reported procedure.<sup>14</sup> W(CO)<sub>5</sub>PMe<sub>2</sub>Ph was prepared from W(CO)<sub>6</sub> and PMe<sub>2</sub>Ph by UV irradiation.<sup>15</sup>

Photolytic Reaction of  $Os_3(CO)_9(\mu_3-S)_2$  (1) with  $W(CO)_5(PMe_2Ph)$ . In a typical reaction, a mixture of  $Os_3(CO)_9(\mu-S)_2$  (67 mg, 0.07 mmol) and W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph) (76 mg, 0.16 mmol) in 50 mL of hexane solvent was photolyzed under a continuous purge with  $N_2$  for 2 h. The solvent was removed in vacuo, and the brown residue was put on silica TLC plates. Elution with hexane/CH<sub>2</sub>Cl<sub>2</sub> (85/15) separated (in order of elution) trace amounts of  $Os_3(CO)_9(\mu_3-S)_2$  (1) and  $W(CO)_5(PMe_2Ph)$  from the major dark green band of  $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)_2$  (2) (23 mg, 28%), the orange  $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu_3-S)_2$  (3) (6 mg, 7%), the brown  $Os_3W(CO)_{11}(PMe_2Ph)_2(\mu_3-S)_2$  (4) (9 mg, 10%), and the dark brown  $Os_3W_2(CO)_{14}(PMe_2Ph)_2(\mu_3-S)(\mu_4-S)$  (5) (12 mg, 13%). IR and <sup>1</sup>H NMR of 2-5 are given in Table I. UV-visible spectra for 2 and 4 are as follows: 2,  $\lambda_1 = 583$  ( $\epsilon 1600 \text{ M}^{-1} \text{ cm}^{-1}$ ),  $\lambda_2 = 404 \text{ nm}$  ( $\epsilon 4000 \text{ M}^{-1}$ cm<sup>-1</sup>); 4,  $\lambda_1 = 435$  ( $\epsilon 1630 \text{ M}^{-1} \text{ cm}^{-1}$ ),  $\lambda_2 = 351 \text{ nm}$  ( $\epsilon 5230 \text{ M}^{-1} \text{ cm}^{-1}$ ).

Addition of Dimethylphenylphosphine to 2. 2 (12 mg, 0.01 mmol) was dissolved in 5 mL of  $CH_2Cl_2$ . To this dimethylphenylphosphine (1.5 mg, 0.01 mmol) dissolved in 2 mL of  $CH_2Cl_2$  was added dropwise, and the mixture was stirred at room temperature for 7 h. The color of the solution changed from dark green to orange. Chromatography on silica TLC plates separated a trace amount of 2 from orange 3 (9 mg, 69%).

Reaction of  $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)$  (2) with CO. A 10-mL solution of 2 (11 mg, 0.01 mmol) in CH<sub>2</sub>Cl<sub>2</sub> was stirred at room temperature under an atmosphere of CO for 18 h. Chromatography of the reaction solution on silica TLC plates gave the following compounds: Os<sub>3</sub>(CO)<sub>9</sub>( $\mu_3$ -S)<sub>2</sub> (1) (4.2mg 47%), W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph) (2.0 mg, 43%), yellow  $Os_3(CO)_8(PMe_2Ph)(\mu_3-S)_2$  (1.0 mg, 10%), unreacted 2 (1.6 mg, 15%), and orange 3 (1.0 mg, 8%).

<sup>(13)</sup> Adams, R. D.; Horvath, I. T.; Mathur, P. J. Am. Chem. Soc. 1983, 105, 7202.

<sup>(14)</sup> Adams, R. D.; Horvath, I. T.; Segmüller, B. E.; Yang, L. W. Organometallics 1983, 2, 1301.

Sulfido-Bridged Tungsten-Osmium Clusters

| compd                                                                                                 | IR (CO), hexane solvent                                                                                                | <sup>1</sup> H NMR                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)_2$ (2)                                                              | 2093 m, 2062 s, 2055 s, 2042 sh, 2012 s,<br>2000 m, 1994 m, 1982 m, 1927 br, 1908 br                                   | 7.61 (m, $C_6H_5$ ), 2.69 (d, $CH_3$ , $^2J_{P-H} = 9.5 \text{ Hz})^a$                                                                                                                                                                                                        |
| Os <sub>3</sub> W(CO) <sub>12</sub> (PMe <sub>2</sub> Ph) <sub>2</sub> ( $\mu_3$ -S) <sub>2</sub> (3) | 2092 s, 2050 s, 2037 m, 2014 s, 2077 sh,<br>1982 m, 1978 m, 1970 m, 1942 m, 1912 w,<br>1895 w, 1873 s, 1833 sh         | 7.41 (m, $C_6H_5$ ), 2.16 (d, $CH_3$ , ${}^2J_{P-H} = 9.2 \text{ Hz})^a$                                                                                                                                                                                                      |
| Os <sub>3</sub> W(CO) <sub>11</sub> (PMe <sub>2</sub> Ph) <sub>2</sub> ( $\mu_3$ -S) <sub>2</sub> (4) | 2083 s, 2057 s, 2029 s, 2006 s, 1997 m, 1983 s, 1970 w, 1967 w, 1957 w, 1913 w, 1871 br                                | 7.13 (m, $C_6H_5$ ), 2.34 (d, $CH_3$ , ${}^2J_{P-H} = 8.8$ Hz),<br>1.79 (d, $CH_3$ , ${}^2J_{P-H} = 9.2$ Hz), 1.07 (d, $CH_3$ ,<br>${}^2J_{P-H} = 8.4$ Hz), 0.87 (d, $CH_3$ , ${}^2J_{P-H} = 8.3$ Hz) <sup>b</sup><br>[27.5 d, -9.88 d, ${}^2J_{P-P} = 28.5$ Hz] <sup>c</sup> |
| Os <sub>3</sub> W(CO) <sub>14</sub> (PMe <sub>2</sub> Ph) <sub>2</sub> ( $\mu_3$ -S)( $\mu_4$ -S) (5) | 2082 s, 2057 s, 2049 sh, 2029 s, 2023 sh,<br>2006 m, 1996 w, 1983 m, 1970 w, 1956 w,<br>1939 w, 1923 m, 1893 w, 1715 w | 7.49 (m, $C_6H_5$ ), 2.29 (d, $CH_3$ , ${}^2J_{P-H} = 9.8$ Hz),<br>2.10 (d, $CH_3$ , ${}^2J_{P-H} = 8.4$ Hz), 2.05 (d, $CH_3$ ,<br>${}^2J_{P-H} = 8.3$ Hz), 1.72 (d, $CH_3$ , ${}^2J_{P-H} = 9.5$ Hz) <sup>a</sup>                                                            |

<sup>a</sup> In CDCl<sub>3</sub>. <sup>b</sup> In toluene- $d_8$  at -20 °C. <sup>c31</sup>P spectrum at -40 °C in toluene- $d_8$ ,  $\delta$  vs. trimethyl phosphite.

Ligand Elimination from 3. A solution of 3 (12 mg, 0.01 mmol) in 40 mL of hexane on photolysis under a continuous purge of N2 for 1 h changed color from orange to dark brown. Chromatography of the mixture on silica TLC plates using hexane/CH<sub>2</sub>Cl<sub>2</sub> (80/20) separated trace amounts of 1,  $Os_3(CO)_8(PMe_2Ph)(\mu_3-S)_2$ ,  $W(CO)_5(PMe_2Ph)$ , dark green 2 (2 mg, 18%), a trace of unreacted 3, and the major brown band of 4 (4 mg, 37%).

CO Addition to 4. A brown solution of 4 (12 mg, 0.01 mmol) in 5 mL of CH<sub>2</sub>Cl<sub>2</sub> was stirred under an atmosphere of CO at room temperature for 48 h. Chromatography of the solution on silica TLC yielded the orange 3 (7 mg, 58%).

Photolytic Reaction of 2 with W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph). A mixture of 2 (20 mg, 0.02 mmol) and W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph) (12 mg, 0.03 mmol) in hexane solvent was photolyzed under a continuous stream of N<sub>2</sub> for 2 h. The solvent was removed in vacuo, and the brown residue was put on silica TLC plates. Elution with hexane/CH<sub>2</sub>Cl<sub>2</sub> (70/30) separated trace amounts of 1,  $Os_3(CO)_8(PMe_2Ph)(\mu_3-S)_2$ ,  $W(CO)_5(PMe_2Ph)$ , and the unreacted 2 from the major dark brown band, 5 (12 mg, 51%).

Crystallographic Analyses. Crystals of each of the compounds suitable for diffraction analysis were obtained from solutions in CH2Cl2/hexane solvent by cooling to -20 °C. All crystals were mounted in thin-walled glass capillaries. Diffraction measurements were made on an Enraf-Nonius CAD-4 fully automated four-circle diffractometer using graphite monochromatized Mo K $\bar{\alpha}$  radiation. Unit cells were determined and refined from 25 randomly selected reflections obtained by using the CAD-4 automatic search, center, index, and least-squares routines. Crystal data, data collection parameters, and results of the analyses are listed in Table II. All data processing was performed on a Digital PDP 11/45 computer by using the Enraf-Nonius SDP program library (version 18). Absorption corrections of a Gaussian integration type were done for each structure. Neutral atom scattering factors were calculated by the standard procedures. Anomalous dispersion corrections were applied to all nonhydrogen atoms. Bell-matrix least-squares refinements minimized the function

$$\sum_{hkl} w(|F_{\text{obsd}}| - |F_{\text{calcd}}|)^2 \text{ where } w = 1/(\sigma(F)^2)$$

$$\sigma(F^2_{\text{obsd}}) = [\sigma(I_{\text{raw}})^2 + (PF^2_{\text{obsd}})^2]^{1/2}/(Lp)$$

$$\sigma(F) = \sigma(F^2_{\text{obsd}})/(2F_{\text{obsd}})$$

Atoms heavier than oxygen were refined anisotropically. All other nonhydrogen atoms were refined isotropically. Positions of the hydrogen atoms were calculated by assuming idealized geometry. Their contributions were added to the structure factor calculations, but their positions were not refined.

For 2 the space group  $P\overline{1}$  was assumed and confirmed by the successful solution and refinement of the structure. The coordinates of the metal atoms were obtained from the phasing (MULTAN) of 444 reflections  $(E_{\min} = 1.80)$ . The coordinates of all remaining nonhydrogen atoms were obtained from difference Fourier calculations.

For compound 3 the unique space group  $P2_1/n$  was identified from the systematic absences observed in the data. The coordinates of the metal atoms were obtained from the phasing (MULTAN) of 264 reflections  $(E_{\min} = 1.78)$ . The coordinates of all remaining nonhydrogen atoms were obtained from difference Fourier calculations.

For compound 4 the unique space group  $P2_12_12_1$  was identified from the systematic absences observed in the data. The coordinates of the metal atoms were determined from phasing (MULTAN) of 256 reflections



Figure 1. ORTEP diagram of  $Os_3W(CO)_{12}(PMe_2Ph)$  ( $\mu_3$ -S)<sub>2</sub> (2) showing 50% probability thermal ellipsoids.

 $(E_{\min} = 1.67)$ . The coordinates of all remaining nonhydrogen atoms were obtained from difference Fourier calculations. The correct enantiomorph was established by refining each enantiomer of the molecule (i.e., positive fractional atomic coordinates vs. negative fractional atomic coordinates). The R factors for the refinements based on positive coordinates were R = 0.047 and  $R_{\rm w}$  = 0.047. The R factors for the refinement based on negative coordinates were R = 0.055 and  $R_{\rm w} = 0.057$ . The former were deemed to be correct and are reported here.

For compound 5 the unique space group  $P2_1/c$  was determined from the systematic absences observed in the data. The coordinates of the metal atoms were determined by the phasing (MULTAN) of 256 reflections  $(E_{\min} = 1.74)$ . The coordinates of all remaining nonhydrogen atoms were obtained from difference Fourier calculations.

Structure factor tables for compounds 2 and 3 were published previously.13 Structure factor tables for 4 and 5 are available with this report (see Supplementary material).

Under the influence of UV irradiation  $Os_3(CO)_9(\mu_3-S)_2$  (1) reacts with W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph) and yields four principal products that have been identified as Os<sub>3</sub>W(CO)<sub>12</sub>(PMe<sub>2</sub>Ph)( $\mu_3$ -S)<sub>2</sub> (2), 28% yield,  $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu_3-S)_2$  (3), 7% yield,  $Os_3W-(CO)_{11}(PMe_2Ph)_2(\mu_3-S)_2$  (4), 10%, and  $Os_3W_2(CO)_{14}-(PMe_2Ph)_2(\mu_3-S)(\mu_4-S)$  (5), 13%. Each product has been characterized by IR and <sup>1</sup>H NMR spectral analysis (see Table I) and a single-crystal X-ray diffraction analysis.

Structure of  $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)_2$  (2). Compound 2 crystallizes with two independent molecules in the asymmetric crystallographic unit. Final fractional atomic coordinates are listed in Table III. Interatomic distances and selected interatomic angles are given in Tables IV and V. Both independent molecules have very similar geometry. An ORTEP diagram of one of these in shown in Figure 1. The molecule contains a cluster of one tungsten and three osmium atoms in the form of a "butterfly" tetrahedron with the tungsten atom in a "wing-tip" position. The metal-metal bonding is significantly distorted. In each independent molecule one tungsten-osmium bond is significantly longer than the other (e.g., Os(2)-W(1) = 3.031 (1) Å [Os(6)-W(2) = 3.068 (1) Å]

<sup>(16) &</sup>quot;International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1975; Vol. lV, (a) pp 99-101, (Table 2.2B); (b) pp 149-150 (Table 2.3.1).

Table II. Crystallographic Data for X-ray Diffraction Studies

|                                              |                                   | co                              | mpd                             |                                   |
|----------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|-----------------------------------|
|                                              | 2                                 | 3                               | 4                               | 5                                 |
| formula                                      | $Os_3WS_2PO_{12}C_{20}H_{11}$     | $Os_3WS_2P_2O_{12}C_{28}H_{22}$ | $Os_3WS_2P_2O_{11}C_{27}H_{22}$ | $Os_3W_2S_2P_2O_{15}C_{31}H_{22}$ |
| temp, ±3 °C                                  | 25                                | 27                              | 28                              | 25                                |
| space group                                  | ΡĪ                                | $P2_1/n$                        | $P2_12_12_1$                    | $P2_1/c$                          |
| a, Å                                         | 9.229 (5)                         | 19.917 (9)                      | 13.943 (3)                      |                                   |
| L Å                                          |                                   |                                 |                                 | 11.666 (4)                        |
| b, <b>Å</b>                                  | 11.785 (3)                        | 9.560 (3)                       | 15.674 (7)                      | 21.539 (9)                        |
| c, <b>Å</b>                                  | 28.559 (9)                        | 21.392 (8)                      | 16.174 (3)                      | 15.934 (10)                       |
| α, deg                                       | 87.02 (2)                         | 90.00                           | 90.00                           | 90.00                             |
| β, deg                                       | 83.82 (2)                         | 113.74 (3)                      | 90.00                           | 92.65 (4)                         |
| γ, deg                                       | 66.82 (4)                         | 90.00                           | 90.00                           | 90.00                             |
| V, Å <sup>3</sup>                            |                                   |                                 |                                 |                                   |
|                                              | 2838 (2)                          | 3728 (5)                        | 3535 (3)                        | 4000 (6)                          |
| $M_{\rm r}$                                  | 1292.9                            | 1431.0                          | 1403.0                          | 1698.9                            |
| Z                                            | 4                                 | 4                               | 4                               | 4                                 |
| $o_{\rm calcd}, g/{\rm cm}^3$                | 3.03                              | 2.55                            | 2.64                            | 2.82                              |
|                                              | M                                 | leasurement of Intensity Da     | ta                              |                                   |
| radtn                                        | Mo Kα (0.71073 Å)                 | Mo Kα (0.71073 Å)               | Mo Kā (0.710 73 Å)              | Mo Kå (0.71073 Å)                 |
| monochromator                                | graphite                          | graphite                        | graphite                        | graphite                          |
|                                              | grapinte                          | grapinte                        | graphite                        | graphite                          |
| detector aperture, mm                        |                                   |                                 |                                 |                                   |
| horizontal $(A + B \tan \theta)$             |                                   |                                 |                                 |                                   |
| $\boldsymbol{A}$                             | 3.0                               | 3.0                             | 3.0                             | 3.0                               |
| В                                            | 1.0                               | 1.0                             | 1.0                             | 1.0                               |
| vertical                                     | 4.0                               | 4.0                             | 4.0                             | 4.0                               |
|                                              |                                   |                                 |                                 |                                   |
| cryst faces                                  | 010, 010, 001                     | Ĭ01, 10Ĭ, Ĭ00, 100              | 001, 102, 101, 101 101          | 021, 021, 021                     |
|                                              | 00Ī, Ī01, 10Ī                     | ĪĪ0, 121, ĪĪ2, 11Ž              | Ī01, 0Ī0, 02Ī, 012              | 021, 100, 100                     |
| cryst size, mm                               | $0.073 \times 0.217 \times 0.332$ | $0.07 \times 0.22 \times 0.25$  | $0.16 \times 0.29 \times 0.33$  | $0.12 \times 0.16 \times 0.46$    |
| cryst orientatn directn;                     | [210]; 0.0                        | [120]; 10.7                     | b; 9.2                          | a*; 3.7                           |
| deg from $\phi$ axis                         | [210], 0.0                        | [120], 10                       |                                 | ,                                 |
| reflens measured                             | $h, \pm k, \pm l$                 | $h, k, \pm l$                   | h, k, l                         | $h, k, \pm l$                     |
| $\max 2\theta$                               | 48°                               | 48°                             | 50°                             | 47°                               |
| scan type                                    | moving crystal-stationary         | moving crystal-stationary       | moving crystal-stationary       | moving crystal-stationa           |
| sean type                                    |                                   |                                 |                                 |                                   |
| 111 ( 4 ) 0 0 4 7                            | counter                           | counter                         | counter                         | counter                           |
| $\omega$ scan width (A + 0.347               | 1.00                              | 1.00                            | 0.95                            | 1.00                              |
| $\tan \theta$ ), deg                         |                                   |                                 |                                 |                                   |
| bkgd                                         | 1/4 additional scan at            | 1/4 additional scan at          | 1/4 additional scan at          | 1/4 addition scan at              |
|                                              | each end of scan                  | each end of scan                | each end of scan                | each end of scan                  |
| ggam mata (wamiahla)                         | cach cha or scan                  | cach cha or scan                | each old of seal                | cach ond or seam                  |
| ω scan rate (variable)                       |                                   |                                 | 10.0                            | 10.0                              |
| max, deg/min                                 | 10.0                              | 10.0                            | 10.0                            | 10.0                              |
| min, deg/min                                 | 1.5                               | 1.5                             | 1.5                             | 1.5                               |
| no. reflens measured                         | 8875                              | 6340                            | 3470                            | 6339                              |
| data used $(F^2 \ge 3.0 \ \sigma(F^2))$      | 6034                              | 3135                            | 2332                            | 3659                              |
| data used (1° ± 3.0 0(1°))                   | 0034                              |                                 | 2332                            | 3037                              |
| . h. comet comet -                           |                                   | Treatment of Data               |                                 |                                   |
| absorptn corctn                              | 133.0                             | 126.0                           | 142.4                           | 156.1                             |
| coeff, cm <sup>-1</sup>                      | 177.9                             | 136.0                           | 143.4                           | 156.1                             |
| grid                                         | $14 \times 6 \times 10$           | $8 \times 12 \times 10$         | $10 \times 10 \times 10$        | $14 \times 6 \times 10$           |
| transmission coeff                           |                                   |                                 |                                 |                                   |
| max                                          | 0.29                              | 0.39                            | 0.18                            | 0.33                              |
|                                              |                                   |                                 | 0.05                            |                                   |
| min                                          | 0.04                              | 0.07                            |                                 | 0.08                              |
| P factor                                     | 0.02                              | 0.03                            | 0.02                            | 0.03                              |
| final residuals                              |                                   |                                 |                                 |                                   |
| $R_F$                                        | 0.033                             | 0.046                           | 0.048                           | 0.057                             |
| $R_{wF}$                                     | 0.034                             | 0.051                           | 0.048                           | 0.069                             |
|                                              |                                   |                                 |                                 |                                   |
| esd of unit wt observatn                     | 1.60                              | 1.83                            | 2.01                            | 2.06                              |
| largest shift/error<br>value of final cycle  | 0.11                              | 0.09                            | 0.16                            | 0.19                              |
| largest peak in final                        | 1.39                              | 1.63                            | 2.32                            | 2.76                              |
| diff Fourier, e <sup>-</sup> /Å <sup>3</sup> |                                   | - · - <del>-</del>              | - <del>-</del>                  | -                                 |

vs. Os(3)-W(1) = 2.969 (1) Å [Os(5)-W(2) = 2.976 (1) Å]. Here and in all cases that follow the molecular dimension given within brackets is the corresponding value in the second crystallographically independent molecule. There are only a few reports of tungsten-osmium bonding distances in the literature. The cluster compounds HOs<sub>3</sub>W(CO)<sub>12</sub>(Cp)<sup>17</sup> and H<sub>3</sub>Os<sub>3</sub>W- $(CO)_{11}(Cp)^{18}$  are probably the most closely related to 2. In these "electron precise" clusters the non-hydride bridged W-Os distances are 2.919 Å<sub>av</sub> and 2.880 (3) Å, respectively. The osmium-osmium bonding in 2 is also quite irregular. The Os-Os bond diametrically opposite the long W-Os bond is also unusually long, Os(1)-Os(3) = 3.060(1) Å [Os(4)–Os(5) = 3.047(1) Å]. The hinge-to-wingtip bond Os(1)-Os(2) = 2.908 (1) Å [Os(4)-Os(6) = 2.899 (1) Å]

is much shorter but still slightly longer than the Os-Os bond distance of 2.877 (3) Å observed in Os<sub>3</sub>(CO)<sub>12</sub>.19 The hinge bond Os(2)-Os(3) = 2.980 (1) Å [Os(5)-Os(6) = 2.946 (1) Å] is roughly midway between the two extremes.  $Os_4(CO)_{12}(\mu_3-S)_2$ (6) the homonuclear homologue of 2 has also been prepared and structurally studied and shows bonding distortions similar to 2. Triply bridging sulfido ligands span the two open triangular faces. The osmium-sulfur distances span the range 2.360 (3)-2.431 (3) A and are similar to those observed in other sulfido-bridged osmium carbonyl clusters. The tungsten-sulfur distances are slightly longer 2.484 (3)-2.549 (3) Å, as would be expected due to its larger covalent radius.<sup>17</sup> The sulfur-sulfur distances 3.176 (8) Å [3.166(8)Å] are indicative of nonbonding or, at most, very weak bonding interactions. The tungsten atom contains a (dimethyl-

<sup>(17)</sup> Churchill, M. R.; Hollander, F. J. Inorg. Chem. 1979, 18, 843.

<sup>(18)</sup> Churchill, M. R.; Hollander, F. J. Inorg. Chem. 1979, 18, 161.

Table III. Final Fractional Atomic Coordinates for Os<sub>3</sub>W(CO)<sub>12</sub>(PMe<sub>2</sub>Ph)(μ<sub>3</sub>-S)<sub>2</sub> (2)

| atom            | x           | <i>y</i>     | z           | atom  | x          | у         |             |
|-----------------|-------------|--------------|-------------|-------|------------|-----------|-------------|
| Os(1)           | 0.81055 (6) | 0.24736 (5)  | 0.04013 (2) | C(2)  | 0.899 (1)  | 0.234 (1) | -0.0229 (4) |
| Os(2)           | 0.98416 (6) | 0.12535 (5)  | 0.11991 (2) | C(3)  | 0.605(1)   | 0.325(1)  | 0.0207 (4)  |
| Os(3)           | 1.10111 (6) | 0.29349 (5)  | 0.06089 (2) | C(4)  | 1.163 (2)  | 0.006(1)  | 0.0891 (5)  |
| Os(4)           | 0.27664 (6) | 0.29491 (5)  | 0.31919 (2) | C(5)  | 0.896(2)   | 0.010(2)  | 0.1376 (5)  |
| Os(5)           | 0.58944 (6) | 0.24926 (5)  | 0.35840 (2) | C(6)  | 1.074 (2)  | 0.100(1)  | 0.1762 (5)  |
| Os(6)           | 0.32991 (6) | 0.20478 (5)  | 0.41483 (2) | C(7)  | 1.293 (2)  | 0.180(1)  | 0.0803 (5)  |
| $\mathbf{W}(1)$ | 0.86042 (6) | 0.39806 (5)  | 0.14169 (2) | C(8)  | 1.188 (1)  | 0.270(1)  | -0.0016 (4) |
| W(2)            | 0.34731 (6) | 0.45964 (5)  | 0.41295 (2) | C(9)  | 1.171 (1)  | 0.418 (1) | 0.0661 (4)  |
| S(1)            | 0.7163 (4)  | 0.2684 (3)   | 0.1233 (1)  | C(10) | 1.075 (2)  | 0.342 (1) | 0.1626 (5)  |
| S(2)            | 0.8393 (4)  | 0.4379 (3)   | 0.0539 (1)  | C(11) | 0.825 (1)  | 0.358 (1) | 0.2083 (4)  |
| S(3)            | 0.4100 (4)  | 0.4329 (3)   | 0.3251 (1)  | C(12) | 0.896 (1)  | 0.553 (1) | 0.1470 (4)  |
| S(4)            | 0.1364 (4)  | 0.3951 (3)   | 0.3924 (1)  | C(13) | 0.185 (2)  | 0.180(1)  | 0.3226 (5)  |
| <b>P</b> (1)    | 0.5787 (4)  | 0.5533 (3)   | 0.1613(1)   | C(14) | 0.117 (2)  | 0.404 (1) | 0.2845 (5)  |
| P(2)            | 0.1355 (4)  | 0.6754 (4)   | 0.4028 (1)  | C(15) | 0.406 (1)  | 0.218 (1) | 0.2648 (4)  |
| O(1)            | 0.782 (1)   | -0.0008 (10) | 0.0348 (3)  | C(16) | 0.707 (2)  | 0.147 (2) | 0.3078 (5)  |
| O(2)            | 0.945 (1)   | 0.2255 (9)   | -0.0623 (3) | C(17) | 0.695 (2)  | 0.127 (2) | 0.3997 (5)  |
| O(3)            | 0.483(1)    | 0.3707 (10)  | 0.0075 (3)  | C(18) | 0.738 (2)  | 0.319 (1) | 0.3566 (5)  |
| O(4)            | 1.271 (1)   | -0.0717 (10) | 0.0704 (4)  | C(19) | 0.453 (2)  | 0.043 (2) | 0.3949 (5)  |
| O(5)            | 0.837(1)    | -0.0593 (11) | 0.1490 (4)  | C(20) | 0.396 (2)  | 0.173 (1) | 0.4747 (5)  |
| O(6)            | 1.132 (1)   | 0.0850 (11)  | 0.2118 (4)  | C(21) | 0.158 (2)  | 0.164 (2) | 0.4353 (5)  |
| O(7)            | 1.413 (1)   | 0.1183 (11)  | 0.0951 (4)  | C(22) | 0.513 (2)  | 0.373 (1) | 0.4529 (5)  |
| O(8)            | 1.248 (1)   | 0.2508 (10)  | -0.0402 (3) | C(23) | 0.476 (2)  | 0.562(1)  | 0.4078 (5)  |
| O(9)            | 1.206 (1)   | 0.5014 (10)  | 0.0712 (3)  | C(24) | 0.243 (1)  | 0.496 (1) | 0.4773 (4)  |
| O(10)           | 1.196 (1)   | 0.3206 (10)  | 0.1773 (3)  | C(31) | 0.566 (1)  | 0.683 (1) | 0.1980 (4)  |
| O(11)           | 0.804(1)    | 0.3336 (10)  | 0.2477 (3)  | C(32) | 0.588 (2)  | 0.660 (1) | 0.2444 (5)  |
| O(12)           | 0.923 (1)   | 0.6389 (10)  | 0.1504 (3)  | C(33) | 0.589 (2)  | 0.751 (2) | 0.2731 (5)  |
| O(13)           | 0.127 (1)   | 0.1066 (11)  | 0.3260 (4)  | C(34) | 0.562 (2)  | 0.866 (2) | 0.2517 (6)  |
| O(14)           | 0.015(1)    | 0.4737 (10)  | 0.2646 (4)  | C(35) | 0.538 (2)  | 0.893 (2) | 0.2069 (6)  |
| O(15)           | 0.481 (1)   | 0.1833 (10)  | 0.2297 (3)  | C(36) | 0.539 (2)  | 0.797 (1) | 0.1778 (5)  |
| O(16)           | 0.778 (1)   | 0.0857 (11)  | 0.2767 (4)  | C(37) | 0.445 (2)  | 0.496 (1) | 0.1942 (4)  |
| O(17)           | 0.775 (1)   | 0.0512 (12)  | 0.4264 (4)  | C(38) | 0.478 (2)  | 0.623 (1) | 0.1102 (5)  |
| O(18)           | 0.821 (1)   | 0.3733 (11)  | 0.3547 (4)  | C(41) | 0.111 (2)  | 0.727 (1) | 0.3425 (4)  |
| O(19)           | 0.523(1)    | -0.0574 (11) | 0.3812 (4)  | C(42) | 0.197 (2)  | 0.787 (2) | 0.3200 (5)  |
| O(20)           | 0.439(1)    | 0.1581 (11)  | 0.5126 (4)  | C(43) | 0.186 (2)  | 0.823 (2) | 0.2727 (6)  |
| O(21)           | 0.046(1)    | 0.1471 (13)  | 0.4491 (4)  | C(44) | 0.078 (2)  | 0.800(2)  | 0.2494 (6)  |
| O(22)           | 0.616 (1)   | 0.3273 (10)  | 0.4791 (4)  | C(45) | -0.012 (2) | 0.747 (2) | 0.2699 (6)  |
| O(23)           | 0.551 (1)   | 0.6209 (10)  | 0.4033 (4)  | C(46) | 0.000 (2)  | 0.706 (2) | 0.3170 (6)  |
| O(24)           | 0.176 (1)   | 0.5181 (10)  | 0.5147 (3)  | C(47) | 0.165 (2)  | 0.799 (1) | 0.4312 (5)  |
| C(1)            | 0.801(1)    | 0.091 (1)    | 0.0373 (4)  | C(48) | -0.060 (2) | 0.698 (2) | 0.4270 (6)  |

phenyl)phosphine ligand, W(1)-P(1)=2.543 (3) Å [W(2)-P(2) = 2.549 (3) Å]. Each metal atom contains three linear terminal carbonyl ligands, and, as expected on the basis of the larger covalent radius, the tungsten-carbon bond distances are approximately 0.1 Å larger than the osmium-carbon distances.

Structure of  $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu_3-S)_2$  (3). Final fractional atomic coordinates are listed in Table VI. Interatomic distances and selected angles are listed in Tables VII and VIII, respectively. An ORTEP drawing of 3 is shown in Figure 2. This molecule consists of a planar cluster of one tungsten and three osmium atoms. There are only three metal—metal bonds, Os(3)—W = 3.044 (1), Os(1)—Os(2) = 2.895 (1), and Os(2)—Os(3) = 2.887 (1) Å. The tungsten—osmium bond is similar in length to the longer tungsten—osmium bonds in 2 while the osmium—osmium bonds are similar in length to the shorter osmium—osmium bonds in 2. The Os(1)—W distance at 3.612 (1) Å seems to be too long to involve a significant bonding interaction.

Two triply bridging sulfido ligands lie symmetrically disposed about the  $M_4$  plane and are each bonded to the tungsten atom and the two osmium atoms Os(1) and Os(3). The tungsten-sulfur distances 2.470 (4) and 2.497 (4) Å are similar to those in 2 while the osmium-sulfur distances 2.440 (4)-2.482 (5) Å are longer than those in 2 and are similar in length to the tungsten-sulfur distances in 3. The tungsten atom contains two (dimethylphenyl)phosphine ligands (W-P = 2.497 (5) Å) and two terminal carbonyl ligands. There are 10 carbonyl ligands distributed among the three osmium atoms as shown in Figure 2. C(9)-O(9) is a semibridge across the Os(3)-W bond, W-C(9) = 2.86 (1) Å.

Structure of Os<sub>3</sub>W(CO)<sub>11</sub>(PMe<sub>2</sub>Ph)<sub>2</sub>( $\mu_3$ -S)<sub>2</sub> (4). Final fractional atomic coordinates are listed in Table IX. Interatomic distances and selected interatomic angles are listed in Tables X and XI. An ORTEP diagram of 4 is shown in Figure 3. For the purposes of comparison with 2, the structure of 4 is probably best



Figure 2. ORTEP diagram of  $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu$ -3-S) $_2$  (3) showing 50% probability thermal ellipsoids.

described as a butterfly tetrahedral cluster of four metal atoms with one bond missing,  $Os(1)\cdots Os(2) = 3.813$  (1) Å. As in 2, there is no bond between Os(1) and W,  $Os(1)\cdots W = 3.666$  (1) Å. There are two osmium-osmium bonds Os(1)-Os(3) = 2.829 (1) and Os(2)-Os(3) = 2.923 (1) Å. Their average, 2.876 Å, is nearly identical with the average Os-Os distance found in  $Os_3-(CO)_{12}$ , 2.877 (3) Å. The two bonding tungsten-osmium distances are decidedly inequivalent, Os(2)-W = 2.814 (1) and Os(3)-W = 3.016 (1) Å. The latter is only slightly shorter than the long Os-W bonds in 2. The metal-sulfur internuclear separations are similar to those in 2 and 3. The sulfur-sulfur distance at 3.209

**Table IV.** Interatomic Distances with esds for  $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)_2$  (2)

| $Os_3 W (CO)_{12} (FWe_2FW) (\mu_3-S)_2 (2)$ |                          |                            |                          |  |  |  |
|----------------------------------------------|--------------------------|----------------------------|--------------------------|--|--|--|
| molec                                        |                          | molec                      | ule 2                    |  |  |  |
| atoms                                        | distance, Å              | atoms                      | distance, Å              |  |  |  |
| Os(1)-Os(2)                                  | 2.908 (1)                | Os(4)-Os(5)                | 3.047 (1)                |  |  |  |
| Os(1)-Os(3)                                  | 3.060(1)                 | Os(4)-Os(6)                | 2.899 (1)                |  |  |  |
| Os(2)-Os(3)                                  | 2.980(1)                 | Os(5)-Os(6)                | 2.946 (1)                |  |  |  |
| Os(2)-W(1)                                   | 3.031 (1)                | Os(5)-W(2)                 | 2.976 (1)                |  |  |  |
| Os(3)-W(1)                                   | 2.969 (1)                | Os(6)-W(2)                 | 3.068 (1)                |  |  |  |
| Os(1)-S(1)                                   | 2.429 (2)                | Os(4)-S(3)                 | 2.415 (3)                |  |  |  |
| Os(1)-S(2)                                   | 2.419 (3)                | Os(4) - S(4)               | 2.431 (3)                |  |  |  |
| Os(2)-S(1)                                   | 2.376 (3)                | Os(5)-S(3)                 | 2.373 (3)                |  |  |  |
| Os(3)-S(2)                                   | 2.367 (3)                | Os(6)-S(4)                 | 2.360 (3)                |  |  |  |
| W(1)-S(1)                                    | 2.493 (3)                | W(2)-S(3)                  | 2.521 (2)                |  |  |  |
| W(1)-S(2)                                    | 2.539 (2)                | W(2)-S(4)                  | 2.484 (3)                |  |  |  |
| W(1)-P(1)                                    | 2.543 (3)                | W(2)-P(2)                  | 2.549 (3)                |  |  |  |
| Os(1)-C(1)                                   | 1.888 (13)               | Os(4)-C(13)                | 1.851 (15)               |  |  |  |
| Os(1)-C(2)                                   | 1.880 (10)               | Os(4)-C(14)                | 1.868 (13)               |  |  |  |
| Os(1)-C(3)                                   | 1.883 (11)               | Os(4)-C(15)                | 1.884 (11)               |  |  |  |
| Os(2)-C(4)                                   | 1.858 (13)               | Os(5)-C(16)                | 1.878 (14)               |  |  |  |
| Os(2)-C(5)                                   | 1.865 (15)               | Os(5)-C(17)                | 1.841 (14)               |  |  |  |
| Os(2)-C(6)                                   | 1.847 (12)               | Os(5)-C(18)                | 1.852 (13)               |  |  |  |
| Os(3)-C(7)                                   | 1.872 (14)               | Os(6)-C(19)                | 1.870 (15)               |  |  |  |
| Os(3)-C(8)                                   | 1.862 (10)               | Os(6)-C(20)                | 1.848 (13)               |  |  |  |
| Os(3)-C(9)                                   | 1.841 (12)               | Os(6)-C(21)                | 1.859 (15)               |  |  |  |
| W(1)-C(10)                                   | 1.972 (12)               | W(2)-C(22)                 | 1.927 (13)               |  |  |  |
| W(1)-C(11)                                   | 1.961 (11)               | W(2)-C(23)                 | 1.992 (13)               |  |  |  |
| W(1)-C(12)                                   | 1.992 (13)               | W(2)– $C(24)$              | 1.966 (11)               |  |  |  |
| P(1)-C(31)                                   | 1.885 (12)               | P(2)-C(41)                 | 1.804 (11)               |  |  |  |
| P(1)-C(37)                                   | 1.788 (11)               | P(2)-C(47)                 | 1.824 (14)               |  |  |  |
| P(1)-C(38)                                   | 1.801 (12)               | P(2)-C(48)                 | 1.781 (14)               |  |  |  |
| C(31)-C(32)                                  | 1.358 (14)               | C(41)-C(42)                | 1.349 (17)               |  |  |  |
| C(32)-C(33)                                  | 1.394 (18)               | C(42)-C(43)                | 1.396 (17)               |  |  |  |
| C(33)-C(34)                                  | 1.396 (19)               | C(43)-C(44)                | 1.366 (18)               |  |  |  |
| C(34)-C(35)                                  | 1.322 (17)               | C(44)-C(45)                | 1.304 (18)               |  |  |  |
| C(35)-C(36)                                  | 1.430 (18)               | C(45)-C(46)                | 1.402 (17)               |  |  |  |
| C(31)-C(36)                                  | 1.380 (16)               | C(41)-C(46)                | 1.417 (17)               |  |  |  |
| C(1)-O(1)                                    | 1.169 (13)               | C(13)-O(13)                | 1.179 (15)               |  |  |  |
| C(2)-O(2)                                    | 1.156 (11)               | C(14)-O(14)                | 1.158 (13)               |  |  |  |
| C(3)-O(3)                                    | 1.139 (12)               | C(15)-O(15)                | 1.151 (12)               |  |  |  |
| C(4)-O(4)                                    | 1.160 (14)               | C(16)-O(16)                | 1.144 (15)               |  |  |  |
| C(5)-O(5)                                    | 1.163 (15)               | C(17)-O(17)                | 1.205 (15)               |  |  |  |
| C(6)-O(6)                                    | 1.171 (13)               | C(18)-O(18)                | 1.174 (14)               |  |  |  |
| C(7)-O(7)                                    | 1.167 (14)               | C(19)-O(19)                | 1.171 (16)               |  |  |  |
| C(8)-O(8)                                    | 1.172 (11)               | C(20)-O(20)                | 1.171 (13)<br>1.151 (15) |  |  |  |
| C(9)-O(9)<br>C(10)-O(10)                     | 1.166 (13)<br>1.163 (13) | C(21)-O(21)                | , ,                      |  |  |  |
| , , , ,                                      | 1.161 (11)               | C(22)-O(22)                | 1.208 (13)<br>1.147 (13) |  |  |  |
| C(11)-O(11)<br>C(12)-O(12)                   | • •                      | C(23)-O(23)<br>C(24)-O(24) | 1.147 (13)               |  |  |  |
|                                              | 1.148 (13)               | S(3)S(4)                   | 3.166 (7)                |  |  |  |
| S(1)···S(2)                                  | 3.176 (7)                | 3(3)***3(4)                | 3.100 (/)                |  |  |  |



Figure 3. ORTEP diagram of  $Os_3W(CO)_{11}(PMe_2Ph)_2(\mu_3-S)_2$  (4) showing 50% probability thermal ellipsoids.

(10) Å is indicative of little or no sulfur-sulfur bonding. The eight coordinate tungsten atom contains two (dimethylphenyl)phosphine ligands and two carbonyl ligands. The osmium atoms each contain



Figure 4. ORTEP diagram of  $Os_3W_2(CO)_{14}(PMe_2Ph)_2(\mu_3-S)$  ( $\mu_4$ -S) (5) showing 50% probability thermal ellipsoids.



Figure 5. ORTEP diagram of  $Os_3W_2(CO)_{14}(PMe_2Ph)_2(\mu_3-S)(\mu_4-S)$  (5) showing 50% probability thermal ellipsoids. Carbonyl ligands and R groups of the phosphine ligands have been omitted for clarity.

three linear terminal carbonyl ligands.

Structure of Os<sub>3</sub>W<sub>2</sub>(CO)<sub>14</sub>(PMe<sub>2</sub>Ph)<sub>2</sub>( $\mu_3$ -S) ( $\mu_4$ -S) (5). Final fractional atomic coordinates are listed in Table XII. Interatomic distances and selected interatomic angles are listed in Tables XIII and XIV. An ORTEP drawing of the complete molecule of 5 is shown in Figure 4. An ORTEP drawing of 5 minus the carbonyl ligands is shown in Figure 5. Compound 5 consists of an open cluster of two tungsten and three osmium atoms. The group Os(1), Os(2), Os(3), and W(2) is structurally analogous to the cluster in 4. The Os(1)...Os(2) and Os(1)...W(2) distances of 3.867 (1) and 3.527 (1) Å, respectively, are clearly nonbonding. The Os-(1)-Os(3) and Os(2)-Os(3) bonding distances in 5 are nearly identical with those in 4. The Os(3)-W(2) distance of 2.991 (1) Å is only slightly shorter than the corresponding distance in 4 (3.016 (1) Å). However, the Os(2)-W(2) distance, 2.703 (1) Å, is over 0.11 Å shorter than corresponding distance in 4 (2.814 (1) Å). The second tungsten atom W(1) is bonded to W(2) via a surprisingly short tungsten-tungsten bond, W(1)-W(2) = 2.711(1) A. By comparison, the tungsten-tungsten bond distance in the electron precise cluster  $Ir_2W_2(CO)_{10}(\eta - Cp)_2$  is 2.991 (1) Å <sup>20</sup> In  $[(\eta - Cp)W(CO)_3]_2$  the tungsten-tungsten single bond distance is 3.222 (1) Å although there is evidence for steric crowding in this case.21 There are few examples of tungsten-tungsten double

<sup>(20)</sup> Churchill, M. R.; Bueno, C.; Hutchinson, J. R. Inorg. Chem. 1982, 21, 1359.

Table V. Interatomic Angles with esds for  $Os_3W(CO)_{12}(PMe_2Ph)(\mu_3-S)_2$  (2)

| molecule             | 1          | molecule              | 2          | molecule                     | 1          | molecule             | 2          |
|----------------------|------------|-----------------------|------------|------------------------------|------------|----------------------|------------|
| atoms                | angle, deg | atoms                 | angle, deg | atoms                        | angle, deg | atoms                | angle, deg |
| Os(2)-Os(1)-Os(3)    | 59.84 (1)  | Os(5) - Os(4) - Os(6) | 59.33 (1)  | S(1)-Os(2)-C(4)              | 151.9 (4)  | S(3)-Os(5)-C(16)     | 106.5 (4)  |
| Os(1)-Os(2)-Os(3)    | 62.61 (1)  | Os(4)-Os(5)-Os(6)     | 57.83 (1)  | S(1)-Os(2)-C(5)              | 84.3 (4)   | S(3)-Os(5)-C(17)     | 163.7 (4)  |
| Os(1)-Os(2)-W(1)     | 75.56 (2)  | Os(4)-Os(5)-W(2)      | 74.44 (2)  | S(1)-Os(2)-C(6)              | 114.9 (4)  | S(3)-Os(5)-C(18)     | 89.8 (4)   |
| Os(1)-Os(3)-Os(2)    | 57.55 (1)  | Os(4) - Os(6) - Os(5) | 62.84 (1)  | $O_{S}(1)-O_{S}(3)-S(2)$     | 51.01 (7)  | Os(4) - Os(6) - S(4) | 53.89 (6)  |
| Os(1)-Os(3)-W(1)     | 74.25 (1)  | Os(4)-Os(6)-W(2)      | 75.21 (2)  | Os(1)-Os(3)-C(7)             | 128.6 (4)  | Os(4)-Os(6)-C(19)    | 92.6 (4)   |
| Os(3)-Os(2)-W(1)     | 59.19 (1)  | Os(6)-Os(5)-W(2)      | 62.40 (2)  | Os(1)-Os(3)-C(8)             | 92.9 (3)   | Os(4)-Os(6)-C(20)    | 164.4 (4)  |
| Os(2)-Os(3)-W(1)     | 61.26 (1)  | Os(5)-Os(6)-W(2)      | 59.28 (2)  | Os(1)-Os(3)-C(9)             | 142.1 (4)  | Os(4)-Os(6)-C(21)    | 104.6 (4)  |
| Os(2)-W(1)-Os(3)     | 59.55 (1)  | Os(5)-W(2)-Os(6)      | 58.32 (2)  | Os(2)-Os(3)-S(2)             | 91.48 (7)  | Os(5)-Os(6)-S(4)     | 93.17 (7)  |
| Os(1)-S(1)-Os(2)     | 74.47 (8)  | Os(4)-S(3)-Os(5)      | 79.04 (9)  | Os(2)-Os(3)-C(7)             | 80.4 (4)   | Os(5)-Os(6)-C(19)    | 80.9 (4)   |
| Os(1)-S(1)-W(1)      | 95.35 (9)  | Os(4)-S(3)-W(2)       | 95.12 (9)  | Os(2)-Os(3)-C(8)             | 126.6 (4)  | Os(5)-Os(6)-C(20)    | 103.8 (4)  |
| Os(2)-S(1)-W(1)      | 76.94 (8)  | Os(5)-S(3)-W(2)       | 74.82 (7)  | Os(2)-Os(3)-C(9)             | 141.2 (3)  | Os(5)-Os(6)-C(21)    | 165.0 (4)  |
| Os(1)-S(2)-Os(3)     | 79.46 (9)  | Os(4)-S(4)-Os(6)      | 74.46 (9)  | W(1)-Os(3)-S(2)              | 55.46 (6)  | W(2)-Os(6)-S(4)      | 52.53 (7)  |
| Os(1)-S(2)-W(1)      | 94.41 (9)  | Os(4)-S(4)-W(2)       | 95.67 (10) | W(1)-Os(3)-C(7)              | 112.1 (4)  | W(2)-Os(6)-C(19)     | 139.8 (4)  |
| Os(3)-S(2)-W(1)      | 74.37 (7)  | Os(6)-S(4)-W(2)       | 78.53 (9)  | W(1)-Os(3)-C(8)              | 158.0 (3)  | W(2)-Os(6)-C(20)     | 91.1 (4)   |
| Os(2)-Os(1)-S(1)     | 51.93 (7)  | Os(5)-Os(4)-S(3)      | 49.87 (7)  | W(1)-Os(3)-C(9)              | 89.4 (3)   | W(2)-Os(6)-C(21)     | 128.0 (5)  |
| Os(2)-Os(1)-S(2)     | 92.19 (6)  | Os(5) - Os(4) - S(4)  | 89.31 (7)  | S(2)-Os(3)-C(7)              | 167.6 (4)  | S(4)-Os(6)-C(19)     | 143.7 (4)  |
| Os(2)-Os(1)-C(1)     | 79.9 (3)   | Os(5)-Os(4)-C(13)     | 123.6 (4)  | S(2)-Os(3)-C(8)              | 102.6 (3)  | S(4)-Os(6)-C(20)     | 123.0 (4)  |
| Os(2)-Os(1)-C(2)     | 124.9 (3)  | Os(5) - Os(4) - C(14) | 145.0 (4)  | S(2)-Os(3)-C(9)              | 91.5 (4)   | S(4)-Os(6)-C(21)     | 84.7 (5)   |
| Os(2) - Os(1) - C(3) | 143.1 (3)  | Os(5) - Os(4) - C(15) | 84.4 (3)   | Os(2)-W(1)-S(1)              | 40.80 (7)  | Os(5)-W(2)-S(3)      | 50.33 (7)  |
| Os(3)-Os(1)-S(1)     | 90.08 (6)  | Os(6) - Os(4) - S(3)  | 92.20 (6)  | Os(2)-W(1)-S(2)              | 87.07 (7)  | Os(5)-W(2)-S(4)      | 89.96 (7)  |
| Os(3)-Os(1)-S(2)     | 49.53 (7)  | Os(6)-Os(4)-S(4)      | 51.66 (7)  | Os(2)-W(1)-P(1)              | 130.39 (7) | Os(5)-W(2)-P(2)      | 142.07 (7) |
| Os(3)-Os(1)-C(1)     | 125.3 (3)  | Os(6) - Os(4) - C(13) | 79.9 (4)   | Os(2)-W(1)-C(10)             | 79.6 (4)   | Os(5)-W(2)-C(22)     | 72.3 (4)   |
| Os(3) - Os(1) - C(2) | 85.0 (3)   | Os(6) - Os(4) - C(14) | 140.5 (4)  | Os(2)-W(1)-C(11)             | 88.8 (3)   | Os(5)-W(2)-C(23)     | 95.0 (4)   |
| Os(3)-Os(1)-C(3)     | 143.2 (3)  | Os(6) - Os(4) - C(15) | 125.2 (3)  | Os(2)-W(1)-C(12)             | 150.6 (3)  | Os(5)-W(2)-C(24)     | 139.4 (3)  |
| S(1) - Os(1) - S(2)  | 81.85 (9)  | S(3) - Os(4) - S(4)   | 81.56 (9)  | Os(3)-W(1)-S(1)              | 90.98 (6)  | Os(6)-W(2)-S(3)      | 86.34 (7)  |
| S(1)-Os(1)-C(1)      | 92.5 (3)   | S(3) - Os(4) - C(13)  | 172.0 (4)  | Os(3)-W(1)-S(2)              | 50.17 (6)  | $O_{s}(6)-W(2)-S(4)$ | 48.94 (7)  |
| S(1)-Os(1)-C(2)      | 175.0 (3)  | S(3)-Os(4)-C(14)      | 95.7 (4)   | Os(3)-W(1)-P(1)              | 141.87 (6) | Os(6)-W(2)-P(2)      | 131.10 (8) |
| S(1)-Os(1)-C(3)      | 93.4 (3)   | S(3)-Os(4)-C(15)      | 93.2 (4)   | Os(3)-W(1)-C(10)             | 70.2 (3)   | Os(6)-W(2)-C(22)     | 80.7 (4)   |
| S(2)-Os(1)-C(1)      | 172.0 (3)  | S(4) - Os(4) - C(13)  | 94.3 (4)   | Os(3)-W(1)-C(11)             | 137.8 (3)  | Os(6)-W(2)-C(23)     | 150.6 (4)  |
| S(2)-Os(1)-C(2)      | 94.8 (4)   | S(4)-Os(4)-C(14)      | 91.4 (4)   | Os(3)-W(1)-C(12)             | 96.8 (3)   | Os(6)-W(2)-C(24)     | 92.4 (3)   |
| S(2)-Os(1)-C(3)      | 94.8 (4)   | S(4)-Os(4)-C(15)      | 173.5 (3)  | Os(1)-C(1)-O(1)              | 174.1 (10) | Os(4)-C(13)-O(13)    | 178.4 (11) |
| Os(1) - Os(2) - S(1) | 53.59 (6)  | Os(4) - Os(5) - S(3)  | 51.09 (7)  | Os(1)-C(2)-O(2)              | 176.5 (10) | Os(4)-C(14)-O(14)    | 177.2 (11) |
| Os(1)-Os(2)-C(4)     | 100.5 (4)  | Os(4) - Os(5)C(16)    | 92.1 (4)   | Os(1)-C(3)-O(3)              | 177.7 (10) | Os(4)-C(15)-O(15)    | 173.2 (11) |
| Os(1) - Os(2) - C(5) | 101.6 (4)  | Os(4) - Os(5) - C(17) | 127.7 (4)  | Os(2)-C(4)-O(4)              | 177.1 (12) | Os(5)-C(16)-O(16)    | 179.4 (13) |
| Os(1) - Os(2) - C(6) | 161.6 (4)  | Os(4)-Os(5)-C(18)     | 139.7 (4)  | Os(2)-C(5)-O(5)              | 177.9 (13) | Os(5)-C(17)-O(17)    | 173.8 (12) |
| Os(3) - Os(2) - S(1) | 93.07 (7)  | Os(6) - Os(5) - S(3)  | 91.92 (6)  | Os(2)-C(6)-O(6)              | 179.0 (12) | Os(5)-C(18)-O(18)    | 174.0 (12) |
| Os(3) - Os(2) - C(4) | 81.7 (4)   | Os(6) - Os(5) - C(16) | 121.5 (4)  | Os(3)-C(7)-O(7)              | 173.6 (12) | Os(6)-C(19)-O(19)    | 176.4 (13) |
| Os(3) - Os(2) - C(5) | 161.1 (4)  | Os(6) - Os(5) - C(17) | 77.2 (4)   | Os(3)-C(8)-O(8)              | 177.1 (11) | Os(6)-C(20)-O(20)    | 177.3 (12) |
| Os(3) - Os(2) - C(6) | 107.6 (4)  | Os(6) - Os(5) - C(18) | 146.2 (3)  | Os(3)-C(9)-O(9)              | 175.4 (10) | Os(6)-C(21)-O(21)    | 175.6 (15) |
| W(1)-Os(2)-S(1)      | 53.26 (7)  | W(2) - Os(5) - S(3)   | 54.85 (6)  | W(1)-C(10)-O(10)             | 172.6 (11) | W(2)-C(22)-O(22)     | 174.7 (12) |
| W(1)-Os(2)-C(4)      | 138.2 (4)  | W(2)-Os(5)-C(16)      | 161.3 (4)  | W(1)-C(11)-O(11)             | 179.8 (10) | W(2)-C(23)-O(23)     | 177.9 (10) |
| W(1)-Os(2)-C(5)      | 129.9 (4)  | W(2)-Os(5)-C(17)      | 108.9 (4)  | W(1)-C(12)-O(12)             | 177.3 (11) | W(2)-C(24)-O(24)     | 177.9 (10) |
| W(1)-Os(2)-C(6)      | 86.1 (4)   | W(2)-Os(5)-C(18)      | 91.9 (4)   | ( ) - () - (- <del>-</del> ) | ()         | (=) =(= ·)           | - (-0)     |

Table VI. Final Fractional Atomic Coordinates for Os<sub>3</sub>W(CO)<sub>12</sub>(PMe<sub>2</sub>Ph)<sub>2</sub>(μ<sub>2</sub>-S)<sub>2</sub> (3)

| atom  | x           | <i>y</i>      | z           | atom  | x           | y         | <b>z</b>    |
|-------|-------------|---------------|-------------|-------|-------------|-----------|-------------|
| Os(1) | 0.70977 (5) | -0.10523 (10) | 0.41823 (4) | C(5)  | 0.7872 (11) | 0.127 (2) | 0.3488 (10) |
| Os(2) | 0.68736 (5) | 0.13897 (10)  | 0.33212 (4) | C(6)  | 0.6774 (14) | 0.320 (3) | 0.2928 (13) |
| Os(3) | 0.74086 (5) | 0.22679 (9)   | 0.47299 (4) | C(7)  | 0.6604 (13) | 0.032 (3) | 0.2537 (11) |
| W     | 0.77846 (5) | 0.02299 (9)   | 0.59163 (4) | C(8)  | 0.6654 (13) | 0.345 (3) | 0.4398 (12) |
| S(1)  | 0.8184 (3)  | 0.0182 (6)    | 0.4963 (2)  | C(9)  | 0.7770 (9)  | 0.315(2)  | 0.5615 (8)  |
| S(2)  | 0.6622 (3)  | 0.0418 (6)    | 0.4870 (2)  | C(10) | 0.8039 (12) | 0.343 (3) | 0.4517 (11) |
| P(1)  | 0.6786 (4)  | 0.0207 (6)    | 0.6339 (3)  | C(11) | 0.8137 (10) | 0.135 (2) | 0.6745 (9)  |
| P(2)  | 0.9143 (4)  | -0.0110 (7)   | 0.6470 (3)  | C(12) | 0.7857 (13) | -0.160(3) | 0.6329 (11) |
| O(1)  | 0.7362 (11) | -0.364 (2)    | 0.5061 (10) | C(21) | 0.6195 (11) | 0.172(2)  | 0.6124 (10) |
| O(2)  | 0.5604 (10) | -0.195 (2)    | 0.3163 (9)  | C(22) | 0.5430 (15) | 0.174 (3) | 0.5808 (13) |
| O(3)  | 0.7847 (10) | -0.243(2)     | 0.3372 (9)  | C(23) | 0.5058 (15) | 0.302 (3) | 0.5665 (14) |
| O(4)  | 0.5345 (8)  | 0.142 (2)     | 0.3292 (8)  | C(24) | 0.5381 (14) | 0.423 (3) | 0.5821 (12) |
| O(5)  | 0.8504 (8)  | 0.123 (2)     | 0.3571 (7)  | C(25) | 0.6086 (14) | 0.428 (3) | 0.6143 (13) |
| O(6)  | 0.6695 (10) | 0.436 (2)     | 0.2749 (9)  | C(26) | 0.6476 (13) | 0.303 (3) | 0.6278 (11) |
| O(7)  | 0.6467 (9)  | -0.050 (2)    | 0.2067 (8)  | C(27) | 0.6181 (14) | -0.129(3) | 0.6059 (13) |
| O(8)  | 0.6133 (9)  | 0.429 (2)     | 0.4184 (8)  | C(28) | 0.7033 (13) | 0.006 (3) | 0.7261 (11) |
| O(9)  | 0.7967 (8)  | 0.399 (2)     | 0.6038 (7)  | C(31) | 0.9635 (11) | 0.126(2)  | 0.6246 (10) |
| O(10) | 0.8460 (10) | 0.413 (2)     | 0.4409 (9)  | C(32) | 1.0052 (14) | 0.098 (3) | 0.5854 (13) |
| O(11) | 0.8365 (7)  | 0.201 (2)     | 0.7238 (7)  | C(33) | 1.0357 (16) | 0.214 (3) | 0.5668 (14) |
| O(12) | 0.7953 (10) | -0.270 (2)    | 0.6583 (9)  | C(34) | 1.0289 (16) | 0.342 (3) | 0.5830 (14) |
| C(1)  | 0.7250 (14) | -0.260 (3)    | 0.4741 (13) | C(35) | 0.9933 (16) | 0.371 (3) | 0.6249 (15) |
| C(2)  | 0.6193 (14) | -0.167 (3)    | 0.3566 (13) | C(36) | 0.9622 (12) | 0.261 (3) | 0.6458 (11) |
| C(3)  | 0.7488 (15) | -0.189 (3)    | 0.3666 (14) | C(37) | 0.9463 (14) | -0.173(3) | 0.6226 (13) |
| C(4)  | 0.5931 (11) | 0.137 (2)     | 0.3303 (10) | C(38) | 0.9592 (13) | -0.015(3) | 0.7393 (11) |

bonds. One example is the dinuclear compound W<sub>2</sub>( $\mu$ -CO)<sub>2</sub>{ $\mu$ -HC(N-3,5-xylyl)<sub>2</sub>}{HC(N-3,5-xylyl)<sub>2</sub>}{N-3,5-xylyl)CH(N-3,5-xy-

lyl)CH<sub>2</sub>} for which the W–W separation is 2.464 (3) Å.  $^{22}$  The metal–sulfur bonding in 5 is very similar to that in 4 except that

## Scheme I

**Table VII.** Interatomic Distances with esds for  $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu_3-S)_2$  (3)

| atoms       | distance, Å | atoms       | distance, Å |
|-------------|-------------|-------------|-------------|
| Os(1)-Os(2) | 2.895 (1)   | C(4)-O(4)   | 1.16 (2)    |
| Os(2)-Os(3) | 2.887 (1)   | C(5)-O(5)   | 1.20(2)     |
| Os(3)-W     | 3.044 (1)   | C(6)-O(6)   | 1.16 (2)    |
| Os(1)-S(1)  | 2.440 (4)   | C(7)-O(7)   | 1.22 (2)    |
| Os(1)-S(2)  | 2.482 (5)   | C(8)-O(8)   | 1.24 (2)    |
| Os(1)-C(1)  | 1.85 (2)    | C(9)-O(9)   | 1.16 (1)    |
| Os(1)-C(2)  | 1.85 (2)    | C(10)-O(10) | 1.16(2)     |
| Os(1)-C(3)  | 1.78 (3)    | C(11)-O(11) | 1.15 (1)    |
| Os(2)-C(4)  | 1.86(2)     | C(12)-O(12) | 1.16 (2)    |
| Os(2)-C(5)  | 1.88(2)     | P(1)-C(21)  | 1.80(2)     |
| Os(2)-C(6)  | 1.90(2)     | P(1)-C(27)  | 1.81 (2)    |
| Os(2)-C(7)  | 1.85 (2)    | P(1)-C(28)  | 1.84(2)     |
| Os(3)-S(1)  | 2.447 (4)   | P(2)-C(31)  | 1.81 (2)    |
| Os(3)-S(2)  | 2.461 (4)   | P(2)-C(37)  | 1.83 (2)    |
| Os(3)-C(8)  | 1.78 (2)    | P(2)-C(38)  | 1.81 (2)    |
| Os(3)-C(9)  | 1.93 (1)    | C(21)-C(22) | 1.40 (2)    |
| Os(3)-C(10) | 1.87 (2)    | C(22)-C(23) | 1.40 (3)    |
| W-S(1)      | 2.470 (4)   | C(23)-C(24) | 1.31 (3)    |
| W-S(2)      | 2.497 (4)   | C(24)-C(25) | 1.30 (3)    |
| W-P(1)      | 2.494 (5)   | C(25)-C(26) | 1.39 (3)    |
| W-P(2)      | 2.500 (5)   | C(26)-C(21) | 1.36 (2)    |
| W···C(9)    | 2.86 (1)    | C(31)-C(32) | 1.42 (3)    |
| W-C(11)     | 1.95 (1)    | C(32)-C(33) | 1.39 (3)    |
| W-C(12)     | 1.94(2)     | C(33)-C(34) | 1.29 (3)    |
| C(1)-O(1)   | 1.18(2)     | C(34)-C(35) | 1.38 (3)    |
| C(2)-O(2)   | 1.17 (2)    | C(35)-C(36) | 1.38 (3)    |
| C(3)-O(3)   | 1.24 (3)    | C(36)-C(31) | 1.37 (2)    |
| Os(1)W      | 3.612 (1)   | S(1)S(2)    | 3.046 (6)   |

the sulfido ligand S(1) in 5 is a quadruple bridge since it is also bonded to the second tungsten atom. Each tungsten atom contains one PMe<sub>2</sub>Ph ligand. Overall, there are 14 carbonyl ligands. Each metal atom contains three terminal carbonyls, except W(2), which has only one. C(14)-O(14) is a bridge across the W(1)-W(2) bond.

Independent Synthesis of 3, 4, and 5. Although the four products 2-5 are all obtained in the photolytic reaction of 1 with W-(CO)<sub>5</sub>(PMe<sub>2</sub>Ph), clearly 3 and 4 which contain two phosphine ligands, cannot be primary products. We have found that 3-5 can be prepared by using 2 as a reagent. 3 can be made in 69% yield by the addition of 1 equiv of PMe<sub>2</sub>Ph to 2. When photolyzed, 3 loses either CO or PMe<sub>2</sub>Ph to yield 4 (37% yield) or regenerate 2 (18% yield). When photolyzed in the presence of W(CO)<sub>5</sub>-(PMe<sub>2</sub>Ph), 2 adds a second tungsten moiety and yields 5 (51% yield). These reactions are summarized in Scheme I.

**Table VIII.** Interatomic Angles with esds for  $Os_2W(CO)_{12}(PMe_2Ph)_2(\mu_2-S)_2$  (3)

| $Os_3W(CO)_{12}(PMe_2Ph)_2(\mu_3-S)_2$ (3) |            |                   |             |  |  |  |  |
|--------------------------------------------|------------|-------------------|-------------|--|--|--|--|
| atoms                                      | angle, deg | atoms             | angle, deg  |  |  |  |  |
| Os(1)-Os(2)-Os(3)                          | 70.90 (2)  | Os(2)-Os(3)-C(10) | 85.4 (6)    |  |  |  |  |
| Os(2)-Os(3)-W                              | 123.20 (3) | W-Os(3)-S(1)      | 52.08 (10)  |  |  |  |  |
| Os(2)-Os(1)-S(1)                           | 84.99 (10) | W-Os(3)-S(2)      | 52.65 (9)   |  |  |  |  |
| Os(2)-Os(1)-S(2)                           | 85.57 (10) | W-Os(3)-C(8)      | 128.5 (7)   |  |  |  |  |
| Os(2)-Os(1)-C(1)                           | 179.3 (8)  | W-Os(3)-C(9)      | 65.8 (4)    |  |  |  |  |
| Os(2)-Os(1)-C(2)                           | 87.0 (7)   | W-Os(3)-C(10)     | 128.4 (5)   |  |  |  |  |
| Os(2)-Os(1)-C(3)                           | 87.9 (8)   | S(1)-Os(3)-S(2)   | 76.71 (15)  |  |  |  |  |
| S(1)-Os(1)-S(2)                            | 76.45 (14) | S(1)-Os(3)-C(8)   | 163.5 (6)   |  |  |  |  |
| S(1)-Os(1)-C(1)                            | 94.3 (6)   | S(1)-Os(3)-C(9)   | 101.5 (4)   |  |  |  |  |
| S(1)-Os(1)-C(2)                            | 169.5 (7)  | S(1)-Os(3)-C(10)  | 95.9 (6)    |  |  |  |  |
| S(1)-Os(1)-C(3)                            | 98.9 (7)   | S(2)-Os(3)-C(8)   | 91.6 (7)    |  |  |  |  |
| S(2)-Os(1)-C(1)                            | 94.2 (7)   | S(2)-Os(3)-C(9)   | 101.4 (4)   |  |  |  |  |
| S(2)-Os(1)-C(2)                            | 96.2 (7)   | S(2)-Os(3)-C(10)  | 169.2 (6)   |  |  |  |  |
| S(2)-Os(1)-C(3)                            | 172.3 (8)  | Os(3)-W-S(1)      | 51.42 (9)   |  |  |  |  |
| Os(1)-Os(2)-C(4)                           | 84.2 (5)   | Os(3)-W-S(2)      | 51.58 (10)  |  |  |  |  |
| Os(1)-Os(2)-C(5)                           | 87.2 (5)   | Os(3)-W-P(1)      | 110.10 (11) |  |  |  |  |
| Os(1) - Os(2) - C(6)                       | 168.1 (7)  | Os(3)-W-P(2)      | 109.50 (12) |  |  |  |  |
| Os(1)-Os(2)-C(7)                           | 92.7 (6)   | Os(3)-W-C(11)     | 106.5 (4)   |  |  |  |  |
| Os(3)-Os(2)-C(4)                           | 88.3 (5)   | Os(3)-W-C(12)     | 154.8 (5)   |  |  |  |  |
| Os(3) - Os(2) - C(5)                       | 84.3 (5)   | S(1)-W-S(2)       | 75.65 (14)  |  |  |  |  |
| Os(3)-Os(2)-C(6)                           | 97.2 (6)   | S(1)-W-P(1)       | 150.25 (14) |  |  |  |  |
| Os(3)-Os(2)-C(7)                           | 163.3 (6)  | S(1)-W-P(2)       | 75.02 (15)  |  |  |  |  |
| Os(2)-Os(3)-S(1)                           | 85.02 (9)  | S(2)-W-P(1)       | 74.84 (14)  |  |  |  |  |
| Os(2)-Os(3)-S(2)                           | 86.13 (9)  | S(2)-W-P(2)       | 150.52 (16) |  |  |  |  |
| Os(2)-Os(3)-C(8)                           | 82.6 (6)   | Os(1)-S(1)-Os(3)  | 86.66 (13)  |  |  |  |  |
| Os(2)-Os(3)-C(9)                           | 170.9 (4)  | Os(1)-C(1)-O(1)   | 175 (2)     |  |  |  |  |
| Os(1)-S(2)-Os(3)                           | 85.45 (15) | Os(1)-C(2)-O(2)   | 175 (2)     |  |  |  |  |
| Os(1)-S(1)-W                               | 94.73 (16) | Os(1)-C(3)-O(3)   | 172 (2)     |  |  |  |  |
| Os(1)-S(2)-W                               | 93.02 (15) | Os(2)-C(4)-O(4)   | 177 (2)     |  |  |  |  |
| Os(3)-S(1)-W                               | 76.50 (12) | Os(2)-C(5)-O(5)   | 177 (1)     |  |  |  |  |
| Os(3)-S(2)-W                               | 75.77 (12) | Os(2)-C(6)-O(6)   | 172 (2)     |  |  |  |  |
| W-P(1)-C(21)                               | 115.7 (6)  | Os(2)-C(7)-O(7)   | 173 (2)     |  |  |  |  |
| W-P(1)-C(27)                               | 114.1 (8)  | Os(3)-C(8)-O(8)   | 178 (1)     |  |  |  |  |
| W-P(1)-C(28)                               | 118.9 (6)  | Os(3)-C(9)-O(9)   | 161 (1)     |  |  |  |  |
| W-P(2)-C(31)                               | 112.2 (5)  | Os(3)-C(10)-O(10) | 177 (2)     |  |  |  |  |
| W-P(2)-C(37)                               | 114.2 (7)  | W-C(11)-O(11)     | 178 (1)     |  |  |  |  |
| W-P(2)-C(38)                               | 119.0 (7)  | W-C(12)-O(12)     | 175 (2)     |  |  |  |  |

The UV-vis spectrum of 2 showed a low-energy absorption  $\lambda_1 = 583$  nm ( $\epsilon$  1600 M<sup>-1</sup> cm<sup>-1</sup>) and one at higher energy  $\lambda_2 = 404$  nm ( $\epsilon$  4000 M<sup>-1</sup> cm<sup>-1</sup>). Two absorptions were also observed in the spectrum of 4 but these are shifted to significantly higher energy,  $\lambda_1 = 435$  ( $\epsilon$  1630 M<sup>-1</sup> cm<sup>-1</sup>),  $\lambda_2 = 351$  nm ( $\epsilon$  5230 M<sup>-1</sup> cm<sup>-1</sup>), compared to those in 2.

## Discussion

Compound 2 provides yet another example of the increasing number of polynuclear metal complexes that violate the requirements of the 18-electron rule. Compound 2 contains 64 electrons and to be electron precise should contain only four

<sup>(21)</sup> Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem. 1974, 13, 1086.

<sup>(22)</sup> De Roode, W. H.; Vrieze, K. J. Organomet. Chem. 1978, 145, 207.

Table IX. Final Fractional Atomic Coordinates for  $Os_3W(CO)_{11}(PMe_2Ph)_2(\mu_3-S)_2$  (4)

| atom  | x                                                                                                       | у                                                                                                                                                                                                                                                                                                                                                    | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Os(1) | 0.82144 (7)                                                                                             | 0.22139 (6)                                                                                                                                                                                                                                                                                                                                          | 0.09582 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.616 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.354 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.098 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                                                         | 0.26181 (8)                                                                                                                                                                                                                                                                                                                                          | -0.01572(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.922(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.473 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.076 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 0.80842 (8)                                                                                             | 0.40877 (6)                                                                                                                                                                                                                                                                                                                                          | 0.01690 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.728 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.499 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.049 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| w`´   | 0.82724 (7)                                                                                             | 0.21916 (6)                                                                                                                                                                                                                                                                                                                                          | -0.05517(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.793 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.497 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.062(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S     | 0.7477 (4)                                                                                              | 0.1044 (4)                                                                                                                                                                                                                                                                                                                                           | 0.0057 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.827 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.305 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.139 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P(1)  | 0.7823 (5)                                                                                              | 0.1038 (5)                                                                                                                                                                                                                                                                                                                                           | 0.1769 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.946(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.296 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.013 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 0.7458 (5)                                                                                              | 0.1026 (5)                                                                                                                                                                                                                                                                                                                                           | -0.1627 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.935(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.125 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.057 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O(1)  | 1.027 (1)                                                                                               | 0.162 (1)                                                                                                                                                                                                                                                                                                                                            | 0.157 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.826(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.028(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.175 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(2)  | 0.827 (2)                                                                                               | 0.394(2)                                                                                                                                                                                                                                                                                                                                             | 0.205 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.911(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.059 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.226 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(3)  | 0.482(2)                                                                                                | 0.125 (2)                                                                                                                                                                                                                                                                                                                                            | -0.069 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.943 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.166 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.220(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(4)  | 0.565 (2)                                                                                               | 0.359 (2)                                                                                                                                                                                                                                                                                                                                            | 0.091(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.892 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.226 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.169 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(5)  | 0.594(2)                                                                                                | 0.415 (2)                                                                                                                                                                                                                                                                                                                                            | -0.140 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.808 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.200 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.122(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(6)  | 0.988(1)                                                                                                | 0.509(1)                                                                                                                                                                                                                                                                                                                                             | 0.114(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.776 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.099 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.123 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(7)  | 0.675(1)                                                                                                | 0.558(1)                                                                                                                                                                                                                                                                                                                                             | 0.063 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.660(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.088(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.164(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(8)  | 0.805(1)                                                                                                | 0.551 (1)                                                                                                                                                                                                                                                                                                                                            | -0.112 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.826(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.144 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.266 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(9)  | 0.829(1)                                                                                                | 0.352 (1)                                                                                                                                                                                                                                                                                                                                            | -0.192 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.708 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.025 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.142 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O(10) | 1.028 (1)                                                                                               | 0.329 (1)                                                                                                                                                                                                                                                                                                                                            | 0.009(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.778 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.097(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.109 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O(11) | 0.998 (1)                                                                                               | 0.072(1)                                                                                                                                                                                                                                                                                                                                             | -0.059(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.753 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.198 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.089 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(1)  | 0.948 (2)                                                                                               | 0.186 (2)                                                                                                                                                                                                                                                                                                                                            | 0.134(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.669(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.224 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.096 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(2)  | 0.827 (2)                                                                                               | 0.329 (2)                                                                                                                                                                                                                                                                                                                                            | 0.162(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.596 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.154(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.126 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 0.555 (3)                                                                                               | 0.180(3)                                                                                                                                                                                                                                                                                                                                             | -0.045 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.618 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.056 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.151 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(4)  | 0.604 (2)                                                                                               | 0.323 (2)                                                                                                                                                                                                                                                                                                                                            | 0.048 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.642 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.157 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.223 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •     |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.821 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.076(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.222 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Os(1) Os(2) Os(3) W S P(1) P(2) O(1) O(2) O(3) O(4) O(5) O(6) O(7) O(8) O(9) O(10) O(11) C(1) C(2) C(3) | Os(1) 0.82144 (7) Os(2) 0.65277 (8) Os(3) 0.80842 (8) W 0.82724 (7) S 0.7477 (4) P(1) 0.7823 (5) P(2) 0.7458 (5) O(1) 1.027 (1) O(2) 0.827 (2) O(3) 0.482 (2) O(4) 0.565 (2) O(5) 0.594 (2) O(6) 0.988 (1) O(7) 0.675 (1) O(8) 0.805 (1) O(9) 0.829 (1) O(10) 1.028 (1) O(11) 0.998 (1) O(11) 0.998 (1) C(1) 0.948 (2) C(2) 0.827 (2) C(3) 0.555 (3) | Os(1) 0.82144 (7) 0.22139 (6) Os(2) 0.65277 (8) 0.26181 (8) Os(3) 0.80842 (8) 0.40877 (6) W 0.82724 (7) 0.21916 (6) S 0.7477 (4) 0.1044 (4) P(1) 0.7823 (5) 0.1038 (5) P(2) 0.7458 (5) 0.1026 (5) O(1) 1.027 (1) 0.162 (1) O(2) 0.827 (2) 0.394 (2) O(3) 0.482 (2) 0.125 (2) O(4) 0.565 (2) 0.359 (2) O(5) 0.594 (2) 0.415 (2) O(6) 0.988 (1) 0.509 (1) O(7) 0.675 (1) 0.558 (1) O(9) 0.829 (1) 0.352 (1) O(10) 1.028 (1) 0.352 (1) O(10) 1.028 (1) 0.329 (1) O(11) 0.998 (1) 0.072 (1) C(1) 0.948 (2) 0.186 (2) C(2) 0.827 (2) 0.329 (2) C(3) 0.555 (3) 0.180 (3) | Os(1) 0.82144 (7) 0.22139 (6) 0.09582 (5) Os(2) 0.65277 (8) 0.26181 (8) -0.01572 (6) Os(3) 0.80842 (8) 0.40877 (6) 0.01690 (6) W 0.82724 (7) 0.21916 (6) -0.05517 (5) S 0.7477 (4) 0.1044 (4) 0.0057 (3) P(1) 0.7823 (5) 0.1038 (5) 0.1769 (3) P(2) 0.7458 (5) 0.1026 (5) -0.1627 (4) O(1) 1.027 (1) 0.162 (1) 0.157 (1) O(2) 0.827 (2) 0.394 (2) 0.205 (1) O(3) 0.482 (2) 0.125 (2) -0.069 (2) O(4) 0.565 (2) 0.359 (2) 0.091 (1) O(5) 0.594 (2) 0.415 (2) -0.140 (1) O(6) 0.988 (1) 0.509 (1) 0.114 (1) O(7) 0.675 (1) 0.558 (1) 0.063 (1) O(8) 0.805 (1) 0.551 (1) -0.112 (1) O(9) 0.829 (1) 0.352 (1) -0.192 (1) O(10) 1.028 (1) 0.329 (1) 0.009 (1) O(11) 0.998 (1) 0.329 (1) 0.009 (1) C(1) 0.948 (2) 0.186 (2) 0.134 (1) C(2) 0.827 (2) 0.329 (2) 0.162 (1) C(3) 0.555 (3) 0.180 (3) -0.045 (2) | Os(1)         0.82144 (7)         0.22139 (6)         0.09582 (5)         C(5)           Os(2)         0.65277 (8)         0.26181 (8)         -0.01572 (6)         C(6)           Os(3)         0.80842 (8)         0.40877 (6)         0.01690 (6)         C(7)           W         0.82724 (7)         0.21916 (6)         -0.05517 (5)         C(8)           S         0.7477 (4)         0.1044 (4)         0.0057 (3)         C(9)           P(1)         0.7823 (5)         0.1038 (5)         0.1769 (3)         C(10)           P(2)         0.7458 (5)         0.1026 (5)         -0.1627 (4)         C(11)           O(1)         1.027 (1)         0.162 (1)         0.157 (1)         C(21)           O(2)         0.827 (2)         0.394 (2)         0.205 (1)         C(22)           O(3)         0.482 (2)         0.125 (2)         -0.069 (2)         C(23)           O(4)         0.565 (2)         0.359 (2)         0.091 (1)         C(24)           O(5)         0.594 (2)         0.415 (2)         -0.140 (1)         C(25)           O(6)         0.988 (1)         0.509 (1)         0.114 (1)         C(26)           O(7)         0.675 (1)         0.558 (1)         0.063 (1)         C(27) | Os(1)         0.82144 (7)         0.22139 (6)         0.09582 (5)         C(5)         0.616 (2)           Os(2)         0.65277 (8)         0.26181 (8)         -0.01572 (6)         C(6)         0.922 (2)           Os(3)         0.80842 (8)         0.40877 (6)         0.01690 (6)         C(7)         0.728 (2)           W         0.82724 (7)         0.21916 (6)         -0.05517 (5)         C(8)         0.793 (2)           S         0.7477 (4)         0.1044 (4)         0.0057 (3)         C(9)         0.827 (2)           P(1)         0.7823 (5)         0.1038 (5)         0.1769 (3)         C(10)         0.946 (2)           P(2)         0.7458 (5)         0.1026 (5)         -0.1627 (4)         C(11)         0.935 (2)           O(1)         1.027 (1)         0.162 (1)         0.157 (1)         C(21)         0.826 (2)           O(2)         0.827 (2)         0.394 (2)         0.205 (1)         C(22)         0.911 (2)           O(3)         0.482 (2)         0.125 (2)         -0.069 (2)         C(23)         0.943 (3)           O(4)         0.565 (2)         0.359 (2)         0.091 (1)         C(24)         0.892 (3)           O(5)         0.594 (2)         0.415 (2)         -0.140 (1) <t< td=""><td>Os(1)         0.82144 (7)         0.22139 (6)         0.09582 (5)         C(5)         0.616 (2)         0.354 (2)           Os(2)         0.65277 (8)         0.26181 (8)         -0.01572 (6)         C(6)         0.922 (2)         0.473 (2)           Os(3)         0.80842 (8)         0.40877 (6)         0.01690 (6)         C(7)         0.728 (2)         0.499 (2)           W         0.82724 (7)         0.21916 (6)         -0.05517 (5)         C(8)         0.793 (2)         0.497 (2)           S         0.7477 (4)         0.1044 (4)         0.0057 (3)         C(9)         0.827 (2)         0.305 (2)           P(1)         0.7823 (5)         0.1038 (5)         0.1769 (3)         C(10)         0.946 (2)         0.296 (2)           P(2)         0.7458 (5)         0.1026 (5)         -0.1627 (4)         C(11)         0.935 (2)         0.125 (2)           O(1)         1.027 (1)         0.162 (1)         0.157 (1)         C(21)         0.826 (2)         -0.028 (2)           O(2)         0.827 (2)         0.394 (2)         0.205 (1)         C(22)         0.911 (2)         -0.059 (2)           O(3)         0.482 (2)         0.125 (2)         -0.069 (2)         C(23)         0.943 (3)         -0.166 (3)           O</td></t<> | Os(1)         0.82144 (7)         0.22139 (6)         0.09582 (5)         C(5)         0.616 (2)         0.354 (2)           Os(2)         0.65277 (8)         0.26181 (8)         -0.01572 (6)         C(6)         0.922 (2)         0.473 (2)           Os(3)         0.80842 (8)         0.40877 (6)         0.01690 (6)         C(7)         0.728 (2)         0.499 (2)           W         0.82724 (7)         0.21916 (6)         -0.05517 (5)         C(8)         0.793 (2)         0.497 (2)           S         0.7477 (4)         0.1044 (4)         0.0057 (3)         C(9)         0.827 (2)         0.305 (2)           P(1)         0.7823 (5)         0.1038 (5)         0.1769 (3)         C(10)         0.946 (2)         0.296 (2)           P(2)         0.7458 (5)         0.1026 (5)         -0.1627 (4)         C(11)         0.935 (2)         0.125 (2)           O(1)         1.027 (1)         0.162 (1)         0.157 (1)         C(21)         0.826 (2)         -0.028 (2)           O(2)         0.827 (2)         0.394 (2)         0.205 (1)         C(22)         0.911 (2)         -0.059 (2)           O(3)         0.482 (2)         0.125 (2)         -0.069 (2)         C(23)         0.943 (3)         -0.166 (3)           O |

**Table X.** Interatomic Distances with esds for  $Os_3W(CO)_{11}(PMe_2Ph)_2(\mu_3-S)_2$  (4)

| 053 11 (00)[[(1 111021 | 11/2(43 5/2 (4) |             |          |
|------------------------|-----------------|-------------|----------|
| Os(1)Os(2)             | 3.813 (1)       | P(1)-C(28)  | 1.79 (3) |
| Os(1)W                 | 3.666 (1)       | P(2)-C(31)  | 1.83 (2) |
| Os(1)-Os(3)            | 2.829(1)        | P(2)-C(37)  | 1.79 (2) |
| Os(2)-Os(3)            | 2.923 (1)       | P(2)-C(38)  | 1.80 (3) |
| Os(2)-W                | 2.814(1)        | C(21)-C(22) | 1.34 (3) |
| Os(3)-W                | 3.016 (1)       | C(22)-C(23) | 1.37 (3) |
| Os(1)-S(1)             | 2.401 (5)       | C(23)-C(24) | 1.35 (3) |
| Os(3)-S(1)             | 2.396 (5)       | C(24)-C(25) | 1.35 (4) |
| W-S(1)                 | 2.457 (6)       | C(25)-C(26) | 1.36 (3) |
| Os(1)-S(2)             | 2.456 (7)       | C(21)-C(26) | 1.37 (3) |
| Os(2)-S(2)             | 2.381 (6)       | C(31)-C(32) | 1.38 (3) |
| W-S(2)                 | 2.475 (6)       | C(32)-C(33) | 1.35 (4) |
| W-P(1)                 | 2.575 (6)       | C(33)-C(34) | 1.41 (5) |
| W-P(2)                 | 2.563 (6)       | C(34)-C(35) | 1.31 (4) |
| S(1) - S(2)            | 3.209 (10)      | C(35)-C(36) | 1.39 (4) |
| Os(1)-C(1)             | 1.82 (3)        | C(31)-C(36) | 1.41 (3) |
| Os(1)-C(2)             | 1.86 (4)        | C(1)-O(1)   | 1.21 (3) |
| Os(1)-C(3)             | 1.86 (2)        | C(2)-O(2)   | 1.16 (4) |
| Os(2)-C(4)             | 1.85 (3)        | C(3)-O(3)   | 1.15 (3) |
| Os(2)-C(5)             | 1.87 (2)        | C(4)-O(4)   | 1.22 (3) |
| Os(2)-C(6)             | 1.87 (2)        | C(5)-O(5)   | 1.10 (3) |
| Os(3)-C(7)             | 1.82 (3)        | C(6)-O(6)   | 1.16 (2) |
| Os(3)-C(8)             | 1.96 (3)        | C(7)-O(7)   | 1.21 (3) |
| Os(3)-C(9)             | 1.85 (3)        | C(8)-O(8)   | 1.11 (3) |
| W-C(10)                | 1.96 (3)        | C(9)-O(9)   | 1.17 (3) |
| W-C(11)                | 1.93 (2)        | C(10)-O(10) | 1.23 (3) |
| P(1)-C(21)             | 1.80 (2)        | C(11)-O(11) | 1.21 (2) |
| P(1)-C(27)             | 1.82 (4)        |             |          |
|                        |                 |             |          |

metal-metal bonds.<sup>23</sup> However, **2** has five metal-metal internuclear separations that are short enough to imply significant bonding interactions. The PSEP theory has successfully explained the bonding in the vast majority of anomalous clusters like **2** and seems to apply well in the case of **2** also.<sup>3-5</sup> According to this theory the cluster core of **2**, including the sulfido ligands, has the form of a nido-pentagonal bipyramid. A pentagonal-bipyramidal cluster should contain eight bonding cluster valence orbitals and thus should accomodate 16 cluster valence electrons. Indeed, according to this theory, **2** contains 16 cluster valence electrons. However, it should not go unnoticed that, of the five metal-metal bonds, two (indicated by the dashed lines in Figure 1) are significantly longer than the others. This could be indicative of a selective weakening of these bonds. A similar selective lengthening of two of the five metal-metal bonds was observed in the homonuclear homologue of **2**,  $Os_4(CO)_{12}(\mu_3-S)_2$  (6).<sup>11</sup> The low-

Table XI. Interatomic Angles with esds for  $Os_3W(CO)_{11}(PMe_2Ph)_2(\mu_3-S)_2$  (4)

| Os3 W (CO)11(1 MC21   | 11/2(μ3-3/2 (-1) |                                      |             |
|-----------------------|------------------|--------------------------------------|-------------|
| atoms                 | angle, deg       | atoms                                | angle, deg  |
| Os(1) - Os(3) - Os(2) | 83.02 (4)        | S(1)-Os(3)-C(7)                      | 86.0 (8)    |
| Os(1)-Os(3)-W         | 77.64 (4)        | S(1)-Os(3)-C(8)                      | 121.4 (8)   |
| Os(2)-Os(3)-W         | 56.54 (3)        | S(1)-Os(3)-C(9)                      | 143.8 (9)   |
| Os(3)-Os(2)-W         | 63.38 (3)        | Os(2)-W-S(1)                         | 102.88 (13) |
| Os(2)-W-Os(3)         | 60.08 (3)        | Os(2)-W-S(2)                         | 53.04 (13)  |
| Os(1)-S(1)-Os(3)      | 72.27 (16)       | Os(2)-W-P(1)                         | 129.30 (17) |
| Os(1)-S(1)-W          | 97.99 (22)       | Os(2)-W-P(2)                         | 141.77 (14) |
| Os(3)-S(1)-W          | 76.83 (17)       | Os(2)-W-C(10)                        | 83.0 (7)    |
| Os(1)-S(2)-Os(2)      | 104.02 (23)      | Os(2)-W-C(11)                        | 71.4 (6)    |
| Os(1)-S(2)-W          | 96.05 (23)       | Os(3)-W-S(1)                         | 50.68 (13)  |
| Os(2)-S(2)-W          | 70.79 (16)       | Os(3)-W-S(2)                         | 77.20 (15)  |
| Os(3) - Os(1) - S(1)  | 53.78 (13)       | Os(3)-W-P(1)                         | 137.16 (17) |
| Os(3)-Os(1)-S(2)      | 81.22 (14)       | Os(3)-W-P(2)                         | 99.18 (15)  |
| Os(3) - Os(1) - C(1)  | 159.4 (8)        | Os(3)-W-C(10)                        | 141.3 (7)   |
| Os(3)-Os(1)-C(2)      | 94.1 (10)        | Os(3)-W-C(11)                        | 77.6 (7)    |
| Os(3)-Os(1)-C(3)      | 102.3 (8)        | S(1)-W-S(2)                          | 81.17 (20)  |
| S(1) - Os(1) - S(2)   | 82.69 (21)       | S(1)-W-P(1)                          | 89.65 (22)  |
| S(1)-Os(1)-C(1)       | 106.3 (9)        | S(1)-W-P(2)                          | 81.43 (20)  |
| S(1)-Os(1)-C(2)       | 90.0 (10)        | S(1)-W-C(10)                         | 163.0 (8)   |
| S(1)-Os(1)-C(3)       | 156.1 (8)        | S(1)-W-C(11)                         | 116.9 (8)   |
| S(2)-Os(1)-C(1)       | 91.6 (10)        | S(2)-W-P(1)                          | 81.73 (21)  |
| S(2)-Os(1)-C(2)       | 172.7 (10)       | S(2)-W-P(2)                          | 159.94 (21) |
| S(2)-Os(1)-C(3)       | 94.7 (9)         | S(2)-W-C(1)                          | 90.2 (8)    |
| Os(3) - Os(2) - S(2)  | 80.48 (17)       | S(2)-W-C(11)                         | 124.4 (6)   |
| Os(3)-Os(2)-C(4)      | 88.9 (Ì1)        | P(1)-W-P(2)                          | 88.25 (21)  |
| Os(3) - Os(2) - C(5)  | 167.9 (7)        | P(1)-W-C(10)                         | 74.6 (8)    |
| Os(3) - Os(2) - C(6)  | 100.6 (9)        | P(1)-W-C(11)                         | 143.6 (6)   |
| W-Os(2)-S(2)          | 56.17 (14)       | P(2)-W-C(10)                         | 103.9 (8)   |
| W-Os(2)-C(4)          | 112.3 (8)        | P(2)-W-C(11)                         | 72.9 (7)    |
| W-Os(2)-C(5)          | 104.6 (7)        | $\hat{W} - \hat{P}(1) - \hat{C}(21)$ | 123.5 (8)   |
| W-Os(2)-C(6)          | 149.6 (8)        | W-P(1)-C(27)                         | 112.8 (12)  |
| S(2)-Os(2)-C(4)       | 167.0 (10)       | W-P(1)-C(28)                         | 114.4 (8)   |
| S(2)-Os(2)-C(5)       | 93.2 (7)         | W-P(2)-C(31)                         | 115.5 (7)   |
| S(2)-Os(2)-C(6)       | 97.4 (7)         | W-P(2)-C(37)                         | 118.3 (8)   |
| Os(1) - Os(3) - S(1)  | 53.95 (13)       | W-P(2)-C(38)                         | 114.6 (9)   |
| Os(1)-Os(3)-C(7)      | 94.4 (8)         | Os(1)-C(1)-O(1)                      | 173 (3)     |
| Os(1)-Os(3)-C(8)      | 173.9 (8)        | Os(1)-C(2)-O(2)                      | 174 (3)     |
| Os(1)-Os(3)-C(9)      | 90.0 (9)         | Os(1)-C(3)-O(3)                      | 177 (3)     |
| Os(2) - Os(3) - S(1)  | 101.33 (16)      | Os(2)-C(4)-O(4)                      | 171 (3)     |
| Os(2) - Os(3) - C(7)  | 168.4 (8)        | Os(2)-C(5)-O(5)                      | 178 (3)     |
| Os(2)-Os(3)-C(8)      | 94.6 (lí)        | Os(2)-C(6)-O(6)                      | 177 (3)     |
| Os(2) - Os(3) - C(9)  | 73.8 (11)        | Os(3)-C(7)-O(7)                      | 172 (3)     |
| W-Os(3)-S(1)          | 52.49 (15)       | Os(3)-C(8)-O(8)                      | 174 (3)     |
| W-Os(3)-C(7)          | 134.0 (7)        | Os(3)-C(9)-O(9)                      | 170 (3)     |
| W-Os(3)-C(8)          | 96.3 (9)         | W-C(10)-O(10)                        | 177 (3)     |
| W-Os(3)-C(9)          | 129.8 (11)       | W-C(11)-O(11)                        | 169 (2)     |
|                       |                  |                                      |             |

energy absorption  $\lambda = 583$  nm observed in 2, which shifts to 435 nm in 4, seems to support the notion of low-lying delocalized

**Table XII.** Final Fractional Atomic Coordinates for  $Os_3W_2(CO)_{14}(PMe_2Ph)_2(\mu_3-S)(\mu_4-S)$  (5)

| atom            | х          | y           | z           | atom  | x         | у          | z         |
|-----------------|------------|-------------|-------------|-------|-----------|------------|-----------|
| Os(1)           | 0.9640 (1) | 0.07531 (6) | 0.87701 (7) | C(5)  | 1.163 (3) | 0.147 (2)  | 0.603 (2) |
| Os(2)           | 1.0496 (1) | 0.09980 (6) | 0.64781 (7) | C(6)  | 1.145 (2) | 0.032 (1)  | 0.669 (2) |
| Os(3)           | 1.0856(1)  | 0.17142 (6) | 0.80269 (7) | C(7)  | 1.139 (3) | 0.213(2)   | 0.902 (2) |
| $\mathbf{W}(1)$ | 0.7018 (1) | 0.07385 (6) | 0.67060 (7) | C(8)  | 1.227 (2) | 0.126(1)   | 0.796 (2) |
| W(2)            | 0.8648 (1) | 0.16187 (5) | 0.70035 (7) | C(9)  | 1.126 (2) | 0.242 (1)  | 0.740(2)  |
| <b>S</b> (1)    | 0.9037 (6) | 0.0507 (3)  | 0.7302 (4)  | C(10) | 0.545 (2) | 0.092(1)   | 0.627 (2) |
| S(2)            | 0.8924 (6) | 0.1782 (4)  | 0.8490 (4)  | C(11) | 0.729(2)  | 0.037 (2)  | 0.558 (2) |
| P(1)            | 0.6408 (7) | -0.0378 (4) | 0.6969 (5)  | C(12) | 0.651 (2) | 0.101 (1)  | 0.784 (2) |
| P(2)            | 0.7822 (7) | 0.2705 (4)  | 0.7160 (5)  | C(13) | 0.930 (3) | 0.210(2)   | 0.611 (2) |
| O(1)            | 0.762(2)   | 0.009(1)    | 0.953 (1)   | C(14) | 0.730 (3) | 0.156 (2)  | 0.604(2)  |
| O(2)            | 1.060(2)   | 0.114 (1)   | 1.048 (1)   | C(21) | 0.592 (2) | -0.059 (1) | 0.798 (2) |
| O(3)            | 1.137 (2)  | -0.031 (1)  | 0.868 (1)   | C(22) | 0.497 (3) | -0.030 (2) | 0.827 (2) |
| O(4)            | 0.975 (2)  | 0.068 (1)   | 0.469 (1)   | C(23) | 0.455 (3) | -0.044(2)  | 0.904(2)  |
| O(5)            | 1.239 (2)  | 0.179 (1)   | 0.579(1)    | C(24) | 0.512(3)  | -0.088 (2) | 0.950(2)  |
| O(6)            | 1.209 (2)  | -0.010 (1)  | 0.685 (1)   | C(25) | 0.601 (3) | -0.118(2)  | 0.929 (2) |
| O(7)            | 1.175 (2)  | 0.229 (1)   | 0.963(2)    | C(26) | 0.647 (3) | -0.102(2)  | 0.850(2)  |
| O(8)            | 1.312 (2)  | 0.099(1)    | 0.800(1)    | C(27) | 0.524 (3) | -0.061 (2) | 0.630(2)  |
| O(9)            | 1.141 (2)  | 0.286 (1)   | 0.699(1)    | C(28) | 0.754 (3) | -0.092 (2) | 0.675 (2) |
| O(10)           | 0.459(2)   | 0.107 (1)   | 0.597 (1)   | C(31) | 0.642(2)  | 0.266(1)   | 0.764(2)  |
| O(11)           | 0.737 (2)  | 0.013(1)    | 0.493 (1)   | C(32) | 0.546 (3) | 0.253 (2)  | 0.716 (2) |
| O(12)           | 0.613(2)   | 0.114 (1)   | 0.848 (1)   | C(33) | 0.442 (3) | 0.245(2)   | 0.753 (2) |
| O(13)           | 0.957 (2)  | 0.236 (1)   | 0.552(1)    | C(34) | 0.439 (3) | 0.250(2)   | 0.838 (2) |
| O(14)           | 0.684(2)   | 0.187 (1)   | 0.547 (1)   | C(35) | 0.534 (3) | 0.262 (2)  | 0.888 (2) |
| C(1)            | 0.833 (2)  | 0.033(1)    | 0.921 (2)   | C(36) | 0.636 (2) | 0.272 (2)  | 0.849 (2) |
| C(2)            | 1.030 (2)  | 0.099 (1)   | 0.982 (2)   | C(37) | 0.866 (3) | 0.323 (2)  | 0.781 (2) |
| C(3)            | 1.061 (2)  | 0.009(1)    | 0.874 (2)   | C(38) | 0.749 (3) | 0.316(2)   | 0.626 (2) |
| C(4)            | 1.000 (3)  | 0.076 (2)   | 0.538 (2)   |       |           |            |           |

**Table XIII.** Interatomic Distances with esds for  $Os_3W_2(CO)_{14}(PMe_2Ph)_2(\mu_3-S)(\mu_4-S)$ , **5** 

| atoms              | distance, Å | atoms                             | distance, Å |
|--------------------|-------------|-----------------------------------|-------------|
| Os(1)Os(2)         | 3.867 (1)   | W(1)-C(12)                        | 2.017 (16)  |
| $Os(1)\cdots W(2)$ | 3.527 (1)   | W(2)-C(13)                        | 1.939 (21)  |
| Os(1)-Os(3)        | 2.802 (1)   | W(1)-C(14)                        | 2.093 (21)  |
| Os(2)-Os(3)        | 2.924(1)    | W(2)-C(14)                        | 2.145 (20)  |
| Os(2)-W(2)         | 2.703 (1)   | P(1)-C(21)                        | 1.789 (17)  |
| Os(3)-W(2)         | 2.991 (1)   | P(1)-C(27)                        | 1.758 (24)  |
| W(1)-W(2)          | 2.711 (1)   | P(1)-C(28)                        | 1.812 (23)  |
| Os(1)-S(1)         | 2.469 (4)   | P(2)-C(31)                        | 1.841 (17)  |
| Os(1)-S(2)         | 2.402 (5)   | P(2)-C(37)                        | 1.797 (23)  |
| Os(2)-S(1)         | 2.437 (4)   | P(2)-C(38)                        | 1.764 (24)  |
| Os(3)-S(2)         | 2.408 (4)   | C(1)-O(1)                         | 1.12 (2)    |
| W(1)-S(1)          | 2.548 (4)   | C(2)-O(2)                         | 1.15 (2)    |
| W(2)-S(1)          | 2.478 (5)   | C(3)-O(3)                         | 1.24 (2)    |
| W(2)-S(2)          | 2.401 (4)   | C(4)-O(4)                         | 1.14(2)     |
| W(1)-P(1)          | 2.548 (6)   | C(5)-O(5)                         | 1.20(2)     |
| W(2)-P(2)          | 2.548 (6)   | C(6)-O(6)                         | 1.19 (2)    |
| Os(1)-C(1)         | 1.938 (17)  | C(7)-O(7)                         | 1.10 (2)    |
| Os(1)-C(2)         | 1.878 (18)  | C(8)-O(8)                         | 1.16 (2)    |
| Os(1)-C(3)         | 1.831 (20)  | C(9)-O(9)                         | 1.16 (2)    |
| Os(2)-C(4)         | 1.881 (22)  | C(10)-O(10)                       | 1.14 (2)    |
| Os(2)-C(5)         | 1.833 (22)  | C(11)-O(11)                       | 1.17 (2)    |
| Os(2)-C(6)         | 1.864 (19)  | C(12)-O(12)                       | 1.16 (2)    |
| Os(3)-C(7)         | 1.902 (24)  | C(13)-O(13)                       | 1.16 (2)    |
| Os(3)-C(8)         | 1.926 (20)  | C(14)-O(14)                       | 1.24 (2)    |
| Os(3)-C(9)         | 1.895 (19)  | C-C (ring $21-26$ ) <sub>av</sub> | 1.37 (3)    |
| W(1)-C(10)         | 1.971 (19)  | C-C (ring $31-36$ ) <sub>av</sub> | 1.37 (3)    |
| W(1)-C(11)         | 2.005 (19)  |                                   |             |

metal-metal bonding orbitals present in 2 as implied by the PSEP theory and absent in 4.

It is believed that these elongated metal-metal bonds do exhibit an enhanced reactivity. This is demonstrated by the facile reaction of 2 with PMe<sub>2</sub>Ph to form 3. The addition of phosphine to 2 occurs via nucleophilic attack at the tungsten atom. A shift of a carbonyl ligand from the tungsten atom to Os(2) (Figure 1), accompanied by a shift of the sulfido ligand S(1) to Os(3), and cleavage of both elongated metal-metal bonds yield 3. A similar reaction occurs in the addition of CO to 6, but the site of addition of the nucleophile could not be discerned in that study. The product 3 is electron precise and is structurally analogous to its homonuclear homologue,  $Os_4(CO)_{13}(\mu_3-S)_2$  (7).

Under the influence of UV irradiation 3 loses either PMe<sub>2</sub>Ph to regenerate 2 or CO to yield 4. The most surprising feature

**Table XIV.** Selected Interatomic Angles with esds for  $Os_3W_2(CO)_{14}(PMe_2Ph)_7(\mu_2-S)(\mu_4-S)$  (5)

| $Os_3 W_2(CO)_{14}(PMe_2Ph)_2(\mu_3-S)(\mu_4-S)$ (5) |             |                  |             |  |  |
|------------------------------------------------------|-------------|------------------|-------------|--|--|
| atoms                                                | angle, deg  | atoms            | angle, deg  |  |  |
| Os(1) - Os(3) - Os(2)                                | 84.92 (3)   | Os(3)-W(2)-C(13) | 90.4 (6)    |  |  |
| Os(1)-Os(3)-W(2)                                     | 74.93 (3)   | Os(3)-W(2)-C(14) | 167.6 (5)   |  |  |
| Os(3)-Os(2)-W(2)                                     | 64.08 (3)   | W(1)-W(2)-C(14)  | 58.61 (10)  |  |  |
| Os(2)-Os(3)-W(2)                                     | 54.36 (2)   | W(1)-W(2)-S(2)   | 109.60 (11) |  |  |
| Os(2)-W(2)-Os(3)                                     | 61.56 (3)   | W(1)-W(2)-P(2)   | 113.21 (12) |  |  |
| Os(2)-W(2)-W(1)                                      | 99.39 (3)   | W(1)-W(2)-C(13)  | 122.7 (6)   |  |  |
| Os(3)-W(2)-W(1)                                      | 136.28 (3)  | W(1)-W(2)-C(14)  | 49.4 (6)    |  |  |
| Os(1)-S(1)-Os(2)                                     | 104.00 (16) | W(2)-W(1)-S(1)   | 56.11 (10)  |  |  |
| Os(1)-S(1)-W(1)                                      | 121.94 (17) | Os(1)-Os(3)-S(2) | 54.27 (12)  |  |  |
| Os(1)-S(1)-W(2)                                      | 90.94 (15)  | Os(1)-Os(3)-C(7) | 98.7 (7)    |  |  |
| Os(2)-S(1)-W(1)                                      | 111.80 (60) | Os(1)-Os(3)-C(8) | 95.6 (6)    |  |  |
| Os(2)-S(1)-W(2)                                      | 66.71 (12)  | Os(1)-Os(3)-C(9) | 163.7 (5)   |  |  |
| W(1)-S(1)-W(2)                                       | 65.28 (11)  | Os(2)-Os(3)-S(2) | 100.98 (11) |  |  |
| Os(1)-S(2)-Os(3)                                     | 71.27 (13)  | Os(2)-Os(3)-C(7) | 169.1 (7)   |  |  |
| Os(1)-S(2)-W(2)                                      | 94.50 (16)  | Os(2)-Os(3)-C(8) | 77.1 (5)    |  |  |
| Os(3)-S(2)-W(2)                                      | 76.93 (13)  | Os(2)-Os(3)-C(9) | 90.6 (5)    |  |  |
| Os(3)-Os(1)-S(1)                                     | 83.41 (10)  | W(2)-Os(3)-S(2)  | 51.43 (10)  |  |  |
| Os(3)-Os(1)-S(2)                                     | 54.46 (11)  | W(2)-W(1)-P(1)   | 146.10 (12) |  |  |
| Os(3)-Os(1)-C(1)                                     | 157.3 (5)   | W(2)-W(1)-C(10)  | 123.7 (6)   |  |  |
| Os(3)-Os(1)-C(2)                                     | 88.8 (6)    | W(2)-W(1)-C(11)  | 107.2 (6)   |  |  |
| Os(3)-Os(1)-C(3)                                     | 104.0 (6)   | W(2)-W(1)-C(12)  | 82.8 (5)    |  |  |
| Os(3)-Os(2)-S(1)                                     | 81.41 (10)  | W(2)-W(1)-C(14)  | 51.1 (6)    |  |  |
| Os(3)-Os(2)-C(4)                                     | 161.9 (7)   | W(1)-C(14)-W(2)  | 79.5 (7)    |  |  |
| Os(3)-Os(2)-C(5)                                     | 88.0 (6)    | Os(1)-C(1)-O(1)  | 174.8 (16)  |  |  |
| Os(3)-Os(2)-C(6)                                     | 101.6 (5)   | Os(1)-C(2)-O(2)  | 173.4 (16)  |  |  |
| W(2)-Os(2)-S(1)                                      | 57.37 (11)  | Os(1)-C(3)-O(3)  | 171.9 (16)  |  |  |
| W(2)-Os(2)-C(4)                                      | 101.9 (6)   | Os(2)-C(4)-O(4)  | 172.7 (20)  |  |  |
| W(2)-Os(2)-C(5)                                      | 116.6 (7)   | Os(2)-C(5)-O(5)  | 174.6 (18)  |  |  |
| W(2)-Os(2)-C(6)                                      | 144.2 (5)   | Os(2)-C(6)-O(6)  | 176.8 (15)  |  |  |
| W(2)-Os(3)-C(7)                                      | 136.5 (7)   | Os(3)-C(7)-O(7)  | 169.6 (24)  |  |  |
| W(2)-Os(3)-C(8)                                      | 130.9 (5)   | Os(3)-C(8)-O(8)  | 173.8 (17)  |  |  |
| W(2)-Os(3)-C(9)                                      | 89.7 (5)    | Os(3)-C(9)-O(9)  | 174.6 (17)  |  |  |
| Os(2)-W(2)-S(1)                                      | 55.92 (10)  | W(1)-C(10)-O(10) | 173.1 (17)  |  |  |
| Os(2)-W(2)-S(2)                                      | 107.78 (11) | W(1)-C(11)-O(11) | 175.0 (18)  |  |  |
| Os(2)-W(2)-P(2)                                      | 142.71 (12) | W(1)-C(12)-O(12) | 174.8 (16)  |  |  |
| Os(2)-W(2)-C(13)                                     | 72.2 (6)    | W(2)-C(13)-O(13) | 175.5 (16)  |  |  |
| Os(2)-W(2)-C(14)                                     | 108.6 (5)   | W(1)-C(14)-O(14) | 139.4 (16)  |  |  |
| Os(3)-W(2)-S(1)                                      | 79.41 (10)  | W(2)-C(14)-O(14) | 140.6 (17)  |  |  |
| Os(3)-W(2)-S(2)                                      | 51.64 (11)  |                  |             |  |  |
| Os(3)-W(2)-P(2)                                      | 101.73 (12) |                  |             |  |  |

about 4 is its structure. 4 is isoelectronic to 2, but unlike 2 it adopts an opened structure having only four metal-metal bonds and is thus electron precise. The most important difference between 2

an i 4 is that they employ different bonding mechanisms. 2 utilizes a delocalized bonding mechanism (PSEP theory) and 4 utilizes a localized bonding mechanism (i.e., all bonds are of a two-center-two-electron type). Except for this difference in the structures of the clusters the only difference between 2 and 4 is in the identity of one of the ligands. 4 contains PMe<sub>2</sub>Ph in place of one of the carbonyl ligands (e.g., C(11)-O(11) in Figure 1). It is not possible at this time to prove which factors are most responsible for the change in structure, but both steric and electronic effects could be important. Most simply, the substitution of a bulky phosphine for a carbonyl ligand should lead to enhanced ligand-ligand nonbonded repulsions. These might be sufficiently large in 4 that they cannot be offset by the formation of the additional metalmetal bond. Electronically, the replacement of a poorly electron-donating CO ligand by a good donor like phosphine would lead to an increase in the electron density on the tungsten atom. This could lead to a strengthening of the tungsten—osmium bonds, perhaps at the expense of the osmium-osmium bonds, and one of the latter is then broken. All of the metal-metal bonds in 4 are shorter than the corresponding bonds in 2, but the greatest contractions are for those which involve metal atoms which have lower coordination numbers as a result of the bond cleavage. Although it is electron precise, 4 does add CO to yield 3. Unfortunately, it is not possible to compare accurately the relative rates of CO addition to 2 and 4 because the addition of CO to 2 leads to degradation of the cluster, but the rates must be somewhat similar because the CO addition to 4 and the CO degradation of 2 seem to occur at similar rates.

When irradiated in the presence of W(CO)<sub>5</sub>PMe<sub>2</sub>Ph, 2, adds a second tungsten-containing moiety across one of its tungsten-sulfur bonds. 5 appears to possess an unusual electronic structure since there are not enough ligands in the complex to allow all the metal atoms to achieve 18-electron configurations. Eighteen-electron configurations could be achieved by employing a metal-metal double bond and assuming that the quadruply bridging sulfido ligand serves as a 6-electron donor. The resonance structures 5A and 5B could be viable representations of its bonding and would explain the observed shortening of the indicated tungsten-osmium and tungsten-tungsten bonds. The pentaosmium cluster  $HOs_5(CO)_{13}(\mu-PhNC_6H_4N)$  is also unsaturated by the amount of 2 electrons and shows a selective shortening of two of



the osmium-osmium bonds to 2.60 Å.<sup>24</sup> In spite of its apparent unsaturation, we have not been successful in performing ligand additions to 5.

In all of the new compounds 2-5 the tungsten atoms are bonded to one or more of the bridging sulfido ligands. It is, thus, believed that the sulfido ligands play a key role in their stabilization and probably an important role in directing their synthesis as well.

Acknowledgment. This research was supported by the National Science Foundation. NMR studies were supported by Grant CHE-7916210 to the Northeast Regional NSF-NMR Facility from the National Science Foundation. We thank Engelhard Industries for a loan of osmium tetroxide.

**Registry No. 1**, 72282-40-7; **2**, 87802-46-8; **3**, 87802-47-9; **4**, 91781-16-7; **5**, 91781-17-8; W(CO)<sub>5</sub>(PMe<sub>2</sub>Ph), 42565-94-6; W, 7440-33-7; Os, 7440-04-2.

Supplementary Material Available: Tables of structure factor amplitudes for the structural analyses of compounds 4 and 5 and tables of thermal parameters and hydrogen atom coordinates for each structure (34 pages). Ordering information is given on any current masthead page.

(24) Dawoodi, A.; Mays, M. J.;; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1980, 712.

# A Molecule Containing the OWOWO Unit. Synthesis, Structure, and Spectroscopy of W<sub>2</sub>O<sub>3</sub>(CH<sub>2</sub>CMe<sub>3</sub>)<sub>6</sub>

Irene Feinstein-Jaffe, Dan Gibson, Stephen J. Lippard,\* Richard R. Schrock,\* and Alan Spool

Contribution from the Department of Chemistry. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received March 5, 1984

Abstract: Addition of excess water to  $W(CCMe_3)(CH_2CMe_3)_3$  yields pentane-soluble, water- and air-stable  $W_2O_3(CH_2CMe_3)_6$  (1). Anhydrous HCl reacts with 1 in the presence of Me<sub>3</sub>SiCl to produce  $WONp_3Cl$  (2).  $W_2O_3(CH_2CMe_3)_6$  crystallizes in the trigonal system, space group  $R^3$ , with a = 10.232 (2) Å, c = 61.446 (9) Å, V = 5571.1 Å<sup>3</sup>, and Z = 6. The molecule, which has crystallographically imposed  $C_3$  symmetry, contains a linear O=W-O-W=O unit in which three neopentyl groups are trigonally disposed about each tungsten atom. The W=O bond lengths are 1.726 (10) and 1.689 (13) Å, the  $W(\mu$ -O) distances are 1.923 (10) and 1.977 (10) Å, and the independent W-C bond lengths are 2.141 (9) and 2.127 (14) Å. The two ends of the molecule are twisted by 31.9 (5)° with respect to one another. Spectroscopic examination of 1 (and [180]1) showed two IR active bands at 962 (905) (w) and 693 (668) (s) cm<sup>-1</sup> and two Raman active bands at 942 (894) (s) and 205 (205) (m) cm<sup>-1</sup> that we assign to the asymmetric W=O stretch, the asymmetric W=O-W stretch, the symmetric W=O stretch, and the symmetric W=O-W stretch, respectively. The calculated force constants are comparable to those reported for several rhenium(V) complexes containing a linear O=Re-O-Re=O backbone.

There is considerable evidence that, in many catalysts consisting of an early transition-metal deposited on silica or alumina, the catalytically active site contains the metal in its highest possible oxidation state (d<sup>0</sup>).<sup>1</sup> In order to understand this chemistry better